Principles of
Data Science

Second Edition

Sinan Ozdemir, Sunil Kakade
and Marco Tibaldeschi

Principles of Data Science
Second Edition

Understand, analyze, and predict data using
Machine Learning concepts and tools

Sinan Ozdemir
Sunil Kakade

Marco Tibaldeschi

BIRMINGHAM - MUMBAI

Principles of Data Science
Second Edition

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy

of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Amey Varangoankar
Acquisition Editor: Dayne Castelino
Content Development Editors: Chris D'cruz
Technical Editor: Sneha Hanchate

Copy Editor: Safis Editing

Project Coordinator: Namarata Swetta
Proofreader: Safis Editing

Indexers: Pratik Shirodkar

Graphics: Tom Scaria

Production Coordinator: Nilesh Mohite

First published: December 2016
Second editon: December 2018

Production reference: 1190419

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78980-454-6

www . packtpub.com

A Mapt

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

mapt.io

Why subscribe?

Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

e Learn better with Skill Plans built especially for you
* Get a free eBook or video every month
* Mapt is fully searchable

* Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

https://mapt.io/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/

Contributors

About the authors

Sinan Ozdemir is a data scientist, start-up founder, and educator living in the

San Francisco Bay Area. He studied pure mathematics at Johns Hopkins University.
He then spent several years conducting lectures on data science at Johns Hopkins
University before founding his own start-up, Kylie.ai, which uses artificial intelligence
to clone brand personalities and automate customer service communications.

Sinan is also the author of Principles of Data Science, First Edition available
through Packt.

Sunil Kakade is a technologist, educator, and senior leader with expertise

in creating data- and Al-driven organizations. He is in the adjunct faculty at
Northwestern University, Evanston, IL, where he teaches graduate courses of data
science and big data. He has several research papers to his credit and has presented
his work in big data applications at reputable conferences. He has US patents in
areas of big data and retail processes. He is passionate about applying data science
to improve business outcomes and save patients' lives. At present, Sunil leads the
information architecture and analytics team for a large healthcare organization
focused on improving healthcare outcomes and lives with his wife, Pratibha, and
daughter, Preeti, in Scottsdale, Arizona.

I would like to thank my mother, Subhadra, wife; Pratibha; and
daughter, Preeti, for supporting me during my education and career
and for supporting my passion for learning. Many thanks to my
mentors, Prof. Faisal Akkawi, Northwestern University; Bill Guise,
Sr. Director, Dr. Joseph Colorafi, CMIO, and Deanna Wise, CIO at
Dignity Health for supporting my passion for big data, data science,
and artificial intelligence. Special thanks to Sinan Ozdemir and Packt
Publishing for giving me the opportunity to co-author this book.

I appreciate the incredible support of my team at Dignity Health
Insights in my journey in data science. Finally, I'd like to thank my
friend, Anand Deshpande, who inspired me to take on this project.

Marco Tibaldeschi, born in 1983, Master's degree in informatic engineering, has
actively worked on the web since 1994. Thanks to the fact that he is the fourth of

four brothers, he has always had a foot in the future. In 1998 he registered his first
domain which was one of the first virtual web communities in Italy. Because of this,
he has been interviewed by different national newspapers and radio stations, and a
research book has been written by University of Pisa in order to understand the social
phenomenon. In 2003, he founded DBN Communication, a web consulting company
that owns and develops eDock, a SaaS that helps sellers to manage their inventories
and orders on the biggest marketplaces in the world (like Amazon and eBay).

I'd like to thank my wife Giulia, because with her and her support
everything seems and becomes possible. Without her help and
her love, I'd be a different man and, I'm sure, a worse one. I'd also
like to thank Nelson Morris and Chris D'cruz from Packt for this
opportunity and for their continuous support.

About the reviewers

Oleg Okun got his PhD from the Institute of Engineering Cybernetics, National
Academy of Sciences (Minsk, Belarus) in 1996. Since 1998 he has worked abroad,
doing both academic research (in Belarus and Finland) and industrial research (in
Sweden and Germany). His research experience includes document image analysis,
cancer prediction by analyzing gene expression profiles (bioinformatics), fingerprint
verification and identification (biometrics), online and offline marketing analytics,
credit scoring (microfinance), and text search and summarization (natural language
processing). He has 80 publications, including one IGI Global-published book and
three co-edited books published by Springer-Verlag, as well as book chapters, journal
articles, and numerous conference papers. He has also been a reviewer of several
books published by Packt Publishing.

Jared James Thompson, PhD, is a graduate of Purdue University and has held
both academic and industrial appointments teaching programming, algorithms,

and big data technology. He is a machine learning enthusiast and has a particular
love of optimization. Jared is currently employed as a machine learning engineer at
Atomwise, a start-up that leverages artificial intelligence to design better drugs faster.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that
we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com/
http://authors.packtpub.com/

Table of Contents

Preface iX
Chapter 1: How to Sound Like a Data Scientist 1
What is data science? 4
Basic terminology 4
Why data science? 5
Example — xyz123 Technologies 6
The data science Venn diagram 7
The math 8
Example — spawner-recruit models 9
Computer programming 11
Why Python? 1"
Python practices 12
Example of basic Python 13
Example — parsing a single tweet 13
Domain knowledge 15
Some more terminology 15
Data science case studies 17
Case study — automating government paper pushing 17
Fire all humans, right? 18
Case study — marketing dollars 19
Case study — what's in a job description? 21
Summary 24
Chapter 2: Types of Data 27
Flavors of data 27
Why look at these distinctions? 28
Structured versus unstructured data 28
Example of data pre-processing 29
Word/phrase counts 30
Presence of certain special characters 30

[il

Table of Contents

The relative length of text 30
Picking out topics 31
Quantitative versus qualitative data 31
Example — coffee shop data 32
Example — world alcohol consumption data 34
Digging deeper 36
The road thus far 36
The four levels of data 37
The nominal level 37
Mathematical operations allowed 38
Measures of center 38
What data is like at the nominal level 38
The ordinal level 39
Examples 39
Mathematical operations allowed 39
Measures of center 40
Quick recap and check 41
The interval level 42
Example 42
Mathematical operations allowed 42
Measures of center 42
Measures of variation 43
The ratio level 45
Examples 45
Measures of center 46
Problems with the ratio level 46
Data is in the eye of the beholder 47
Summary 47
Answers 48
Chapter 3: The Five Steps of Data Science 49
Introduction to data science 49
Overview of the five steps 50
Asking an interesting question 50
Obtaining the data 50
Exploring the data 51
Modeling the data 51
Communicating and visualizing the results 51
Exploring the data 51
Basic questions for data exploration 52
Dataset 1 — Yelp 53
DataFrames 55
Series 56
Exploration tips for qualitative data 56

Lii]

Table of Contents

Dataset 2 — Titanic 62
Summary 66
Chapter 4: Basic Mathematics 67
Mathematics as a discipline 67
Basic symbols and terminology 68
Vectors and matrices 68
Quick exercises 71
Answers 71
Arithmetic symbols 71
Summation 71
Proportional 72
Dot product 72
Graphs 75
Logarithms/exponents 76
Set theory 78
Linear algebra 82
Matrix multiplication 83
How to multiply matrices 83
Summary 87
Chapter 5: Impossible or Improbable - A Gentle Introduction
to Probability 89
Basic definitions 89
Probability 90
Bayesian versus Frequentist 91
Frequentist approach 92
The law of large numbers 93
Compound events 95
Conditional probability 98
The rules of probability 98
The addition rule 98
Mutual exclusivity 100
The multiplication rule 100
Independence 101
Complementary events 102
A bit deeper 103
Summary 104
Chapter 6: Advanced Probability 105
Collectively exhaustive events 106
Bayesian ideas revisited 106
Bayes' theorem 106
More applications of Bayes' theorem 110

Table of Contents

Example — Titanic 110
Example — medical studies 112
Random variables 113
Discrete random variables 114
Types of discrete random variables 119
Binomial random variables 120
Summary 129
Chapter 7: Basic Statistics 131
What are statistics? 131
How do we obtain and sample data? 133
Obtaining data 133
Observational 133
Experimental 133
Sampling data 135
Probability sampling 136
Random sampling 136
Unequal probability sampling 137
How do we measure statistics? 138
Measures of center 138
Measures of variation 139
Definition 143
Example — employee salaries 143
Measures of relative standing 144
The insightful part — correlations in data 150
The empirical rule 152
Example — Exam scores 153
Summary 154
Chapter 8: Advanced Statistics 155
Point estimates 155
Sampling distributions 160
Confidence intervals 163
Hypothesis tests 168
Conducting a hypothesis test 169
One sample t-tests 170
Example of a one-sample t-test 171
Assumptions of the one-sample t-test 171
Type | and type Il errors 174
Hypothesis testing for categorical variables 175
Chi-square goodness of fit test 175
Chi-square test for association/independence 178
Assumptions of the chi-square independence test 179
Summary 180

[iv]

Table of Contents

Chapter 9: Communicating Data 181
Why does communication matter? 181
Identifying effective and ineffective visualizations 182

Scatter plots 182
Line graphs 184
Bar charts 185
Histograms 187
Box plots 189
When graphs and statistics lie 192
Correlation versus causation 192
Simpson's paradox 196
If correlation doesn't imply causation, then what does? 197
Verbal communication 197
It's about telling a story 198
On the more formal side of things 198
The why/how/what strategy of presenting 199
Summary 200

Chapter 10: How to Tell If Your Toaster

Is Learning — Machine Learning Essentials 201
What is machine learning? 202

Example — facial recognition 203
Machine learning isn't perfect 204
How does machine learning work? 205
Types of machine learning 205

Supervised learning 206

Example — heart attack prediction 207

It's not only about predictions 209
Types of supervised learning 209
Data is in the eyes of the beholder 211
Unsupervised learning 212
Reinforcement learning 213
Overview of the types of machine learning 215
How does statistical modeling fit into all of this? 216
Linear regression 217

Adding more predictors 222

Regression metrics 224
Logistic regression 231
Probability, odds, and log odds 232

The math of logistic regression 235
Dummy variables 238

Summary 243

[v]

Table of Contents

Chapter 11: Predictions Don't Grow on Trees - or Do They? 245
Naive Bayes classification 245
Decision trees 253

How does a computer build a regression tree? 256
How does a compulter fit a classification tree? 256
Unsupervised learning 261
When to use unsupervised learning 261
k-means clustering 262
lllustrative example — data points 264
lllustrative example — beer! 267
Choosing an optimal number for K and cluster validation 270
The Silhouette Coefficient 270
Feature extraction and principal component analysis 272
Summary 283

Chapter 12: Beyond the Essentials 285

The bias/variance trade-off 286
Errors due to bias 286
Error due to variance 286

Example — comparing body and brain weight of mammals 287
Two extreme cases of bias/variance trade-off 295
Underfitting 295
Overfitting 296
How bias/variance play into error functions 296

K folds cross-validation 298

Grid searching 302
Visualizing training error versus cross-validation error 305

Ensembling techniques 307
Random forests 309
Comparing random forests with decision trees 314

Neural networks 315
Basic structure 315

Summary 321

Chapter 13: Case Studies 323

Case study 1 — Predicting stock prices based on social media 323
Text sentiment analysis 323
Exploratory data analysis 324

Regression route 336
Classification route 338
Going beyond with this example 340

[vil

Table of Contents

Case study 2 —- Why do some people cheat on their spouses? 340
Case study 3 — Using TensorFlow 348
TensorFlow and neural networks 352
Summary 358
Chapter 14: Building Machine Learning Models
with Azure Databricks and Azure Machine Learning service 359
Technical requirements 360
Technologies for machine learning projects 360
Apache Spark 361
Data management in Apache Spark 362
Databricks and Azure Databricks 363
MLlIib 364
Configuring Azure Databricks 366
Creating an Azure Databricks cluster 367
Training a text classifier with Azure Databricks 370
Loading data into Azure Databricks 371
Reading and prepping our dataset 373
Feature engineering 377
Tokenizers 378
StopWordsRemover 379
TF-IDF 380
Model training and testing 381
Exporting the model 384
Azure Machine Learning 386
Creating an Azure Machine Learning workspace 387
Azure Machine Learning SDK for Python 390
Integrating Azure Databricks and Azure Machine Learning 392
Programmatically create a new Azure Machine Learning workspace 392
SMS spam classifier on Azure Machine Learning 394
Experimenting with and selecting the best model 396
Deploying to Azure Container Instances 402
Testing our RESTful intelligent web service 406
Summary 408
Other Books You May Enjoy 409

Index 413

[vii]

Preface

The topic of this book is data science, which is a field of study that has been growing
rapidly for the past few decades. Today, more companies than ever before are
investing in big data and data science to improve business performance, drive
innovation, and create new revenue streams by building data products. According to
LinkedIn's 2017 US Emerging Jobs Report, machine learning engineer, data scientist,
and big data engineer rank among the top emerging jobs, and companies in a wide
range of industries are seeking people with the requisite skills for those roles.

We will dive into topics from all three areas and solve complex problems. We

will clean, explore, and analyze data in order to derive scientific and accurate
conclusions. Machine learning and deep learning techniques will be applied to solve
complex data tasks.

Who this book is for

This book is for people who are looking to understand and utilize the basic practices
of data science for any domain. The reader should be fairly well acquainted with
basic mathematics (algebra, and perhaps probability) and should feel comfortable
reading snippets in R/Python as well as pseudo code. The reader is not expected

to have worked in a data field; however, they should have the urge to learn and
apply the techniques put forth in this book to either their own datasets or those
provided to them.

What this book covers

Chapter 1, How to Sound Like a Data Scientist, introduces the basic terminology used
by data scientists and looks at the types of problem we will be solving throughout
this book.

[ix]

Preface

Chapter 2, Types of Data, looks at the different levels and types of data out there
and shows how to manipulate each type. This chapter will begin to deal with the
mathematics needed for data science.

Chapter 3, The Five Steps of Data Science, uncovers the five basic steps of performing
data science, including data manipulation and cleaning, and shows examples of each
step in detail.

Chapter 4, Basic Mathematics, explains the basic mathematical principles that guide
the actions of data scientists by presenting and solving examples in calculus, linear
algebra, and more.

Chapter 5, Impossible or Improbable — a Gentle Introduction to Probability, is a beginner's
guide to probability theory and how it is used to gain an understanding of our
random universe.

Chapter 6, Advanced Probability, uses principles from the previous chapter and
introduces and applies theorems, such as Bayes' Theorem, in the hope of uncovering
the hidden meaning in our world.

Chapter 7, Basic Statistics, deals with the types of problem that statistical inference
attempts to explain, using the basics of experimentation, normalization, and
random sampling.

Chapter 8, Advanced Statistics, uses hypothesis testing and confidence intervals to gain
insight from our experiments. Being able to pick which test is appropriate and how
to interpret p-values and other results is very important as well.

Chapter 9, Communicating Data, explains how correlation and causation affect our
interpretation of data. We will also be using visualizations in order to share our
results with the world.

Chapter 10, How to Tell Whether Your Toaster Is Learning — Machine Learning Essentials,
focuses on the definition of machine learning and looks at real-life examples of how
and when machine learning is applied. A basic understanding of the relevance of
model evaluation is introduced.

Chapter 11, Predictions Don't Grow on Trees, or Do They?, looks at more complicated
machine learning models, such as decision trees and Bayesian predictions, in order to
solve more complex data-related tasks.

Chapter 12, Beyond the Essentials, introduces some of the mysterious forces guiding
data science, including bias and variance. Neural networks are introduced as a
modern deep learning technique.

[x]

Preface

Chapter 13, Case Studies, uses an array of case studies in order to solidify the ideas
of data science. We will be following the entire data science workflow from start to
finish multiple times for different examples, including stock price prediction and
handwriting detection.

Chapter 14, Microsoft Databricks Case Studies, will harness the power of the Microsoft
data environment as well as Apache Spark to put our machine learning in high gear.
This chapter makes use of parallelization and advanced visualization software to get
the most out of our data.

Chapter 15, Building Machine Learning Models with Azure Databricks and Azure ML,
looks at the different technologies that a data scientist can use on Microsoft Azure
Platform, which help in managing big data projects without having to worry about
infrastructure and computing power.

To get the most out of this book

This book will attempt to bridge the gap between math, programming, and domain
expertise. Most people today have expertise in at least one of these (maybe two), but
proper data science requires a little bit of all three.

Download the example code files

You can download the example code files for this book from your account at www.
packt . com. If you purchased this book elsewhere, you can visit www . packt . com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

Ll

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

* WinRAR/7-Zip for Windows
* Zipeg/iZip/UnRarX for Mac
» 7-Zip/PeaZip for Linux

[xi]

Preface

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Principles-of-Data-Science-Second-Edition. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://www.packtpub.com/sites/
default/files/downloads/9781789804546 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: "Mount the downloaded webStorm-10+*.dmg disk
image file as another disk in your system."

A block of code is set as follows:

dict = {"dog": "human's best friend", "cat": "destroyer of world"}
dict["dog"]l# == "human's best friend"
len(dict["cat"]) # == 18

but if we try to create a pair with the same key as an existing key
dict["dog"] = "Arf"

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def jaccard(userl, user2):

stores_in common = len(userl & user2)
stores_all_together = len(user1 | user2)

return stores / float (stores_all together)

Any command-line input or output is written as follows:

import numpy as np

[xii]

https://github.com/PacktPublishing/Principles-of-Data-Science-Second-Edition
https://github.com/PacktPublishing/Principles-of-Data-Science-Second-Edition
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789804546_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789804546_ColorImages.pdf

Preface

Bold: Indicates a new term, an important word, or words that you see onscreen.
For example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Select System info from the Administration panel."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
mention the book title in the subject of your message and email us at
customercare@packtpub. com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit www.packt .com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address or
website name. Please contact us at copyrightepackt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit authors.packtpub. com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt . com.

[xiii]

How to Sound Like a
Data Scientist

No matter which industry you work in—IT, fashion, food, or finance — there is no
doubt that data affects your life and work. At some point this week, you will either
have or hear a conversation about data. News outlets are covering more and more
stories about data leaks, cybercrimes, and how data can give us a glimpse into our
lives. But why now? What makes this era such a hotbed of data-related industries?

In the nineteenth century, the world was in the grip of the Industrial Age. Mankind
was exploring its place in the industrial world, working with giant mechanical
inventions. Captains of industry, such as Henry Ford, recognized that using these
machines could open major market opportunities, enabling industries to achieve
previously unimaginable profits. Of course, the Industrial Age had its pros and cons.
While mass production placed goods in the hands of more consumers, our battle
with pollution also began around this time.

By the twentieth century, we were quite skilled at making huge machines; the goal
then was to make them smaller and faster. The Industrial Age was over and was
replaced by what we now refer to as the Information Age. We started using machines
to gather and store information (data) about ourselves and our environment for the
purpose of understanding our universe.

[11]

How to Sound Like a Data Scientist

Beginning in the 1940s, machines such as ENIAC (considered one of the first—if
not the first— computers) were computing math equations and running models and
simulations like never before. The following photograph shows ENIAC:

ENIAC —The world's first electronic digital computer
(Ref: http:/ /ftp.arl.mil/ftp /historic-computers/)

We finally had a decent lab assistant who could run the numbers better than we
could! As with the Industrial Age, the Information Age brought us both the good
and the bad. The good was the extraordinary works of technology, including mobile
phones and televisions. The bad was not as bad as worldwide pollution, but still left
us with a problem in the twenty-first century —so much data.

[2]

http://ftp.arl.mil/ftp/historic-computers/

Chapter 1

That's right — the Information Age, in its quest to procure data, has exploded the
production of electronic data. Estimates show that we created about 1.8 trillion
gigabytes of data in 2011 (take a moment to just think about how much that is). Just
one year later, in 2012, we created over 2.8 trillion gigabytes of data! This number

is only going to explode further to hit an estimated 40 trillion gigabytes of created
data in just one year by 2020. People contribute to this every time they tweet, post on
Facebook, save a new resume on Microsoft Word, or just send their mom a picture
by text message.

Not only are we creating data at an unprecedented rate, but we are also consuming
it at an accelerated pace as well. Just five years ago, in 2013, the average cell phone
user used under 1 GB of data a month. Today, that number is estimated to be well
over 2 GB a month. We aren't just looking for the next personality quiz—what we are
looking for is insight. With all of this data out there, some of it has to be useful to us!
And it can be!

So we, in the twenty-first century, are left with a problem. We have so much data
and we keep making more. We have built insanely tiny machines that collect data
24/7, and it's our job to make sense of it all. Enter the Data Age. This is the age when
we take machines dreamed up by our nineteenth century ancestors and the data
created by our twentieth century counterparts and create insights and sources of
knowledge that every human on Earth can benefit from. The United States created an
entirely new role in the government of chief data scientist. Many companies are now
investing in data science departments and hiring data scientists. The benefit is quite
obvious —using data to make accurate predictions and simulations gives us insight
into our world like never before.

Sounds great, but what's the catch?

This chapter will explore the terminology and vocabulary of the modern data
scientist. We will learn keywords and phrases that will be essential in our discussion
of data science throughout this book. We will also learn why we use data science and
learn about the three key domains that data science is derived from before we begin
to look at the code in Python, the primary language used in this book. This chapter
will cover the following topics:

* The basic terminology of data science
* The three domains of data science

* The basic Python syntax

[31]

How to Sound Like a Data Scientist

What is data science?

Before we go any further, let's look at some basic definitions that we will use
throughout this book. The great/awful thing about this field is that it is so young
that these definitions can differ from textbook to newspaper to whitepaper.

Basic terminology

The definitions that follow are general enough to be used in daily conversations, and
work to serve the purpose of this book - an introduction to the principles of
data science.

Let's start by defining what data is. This might seem like a silly first definition to look
at, but it is very important. Whenever we use the word "data," we refer to a collection
of information in either an organized or unorganized format. These formats have the
following qualities:

* Organized data: This refers to data that is sorted into a row/column
structure, where every row represents a single observation and the columns
represent the characteristics of that observation

* Unorganized data: This is the type of data that is in a free form, usually text
or raw audio/signals that must be parsed further to become organized

Whenever you open Excel (or any other spreadsheet program), you are looking at a
blank row/column structure, waiting for organized data. These programs don't do
well with unorganized data. For the most part, we will deal with organized data as
it is the easiest to glean insights from, but we will not shy away from looking at raw
text and methods of processing unorganized forms of data.

Data science is the art and science of acquiring knowledge through data.

What a small definition for such a big topic, and rightfully so! Data science covers so
many things that it would take pages to list it all out (I should know —1I tried and got
told to edit it down).

Data science is all about how we take data, use it to acquire knowledge, and then use
that knowledge to do the following:

e Make decisions

e Predict the future

* Understand the past/present

* Create new industries/products

[4]

Chapter 1

This book is all about the methods of data science, including how to process data,
gather insights, and use those insights to make informed decisions and predictions.

Data science is about using data in order to gain new insights that you would
otherwise have missed.

As an example, using data science, clinics can identify patients who are likely to not
show up for an appointment. This can help improve margins, and providers can give
other patients available slots.

That's why data science won't replace the human brain, but complement it, working
alongside it. Data science should not be thought of as an end-all solution to our data
woes; it is merely an opinion—a very informed opinion, but an opinion nonetheless.
It deserves a seat at the table.

Why data science?

In this Data Age, it's clear that we have a surplus of data. But why should that
necessitate an entirely new set of vocabulary? What was wrong with our previous
forms of analysis? For one, the sheer volume of data makes it literally impossible for
a human to parse it in a reasonable time frame. Data is collected in various forms and
from different sources, and often comes in a very unorganized format.

Data can be missing, incomplete, or just flat out wrong. Oftentimes, we will have
data on very different scales, and that makes it tough to compare it. Say that we

are looking at data in relation to pricing used cars. One characteristic of a car is the
year it was made, and another might be the number of miles on that car. Once we
clean our data (which we will spend a great deal of time looking at in this book), the
relationships between the data become more obvious, and the knowledge that was
once buried deep in millions of rows of data simply pops out. One of the main goals
of data science is to make explicit practices and procedures to discover and apply
these relationships in the data.

Earlier, we looked at data science in a more historical perspective, but let's take a
minute to discuss its role in business today using a very simple example.

[51]

How to Sound Like a Data Scientist

Example — xyz123 Technologies

Ben Runkle, the CEO of xyz123 Technologies, is trying to solve a huge problem.

The company is consistently losing long-time customers. He does not know why
they are leaving, but he must do something fast. He is convinced that in order to
reduce his churn, he must create new products and features, and consolidate existing
technologies. To be safe, he calls in his chief data scientist, Dr. Hughan. However,
she is not convinced that new products and features alone will save the company.
Instead, she turns to the transcripts of recent customer service tickets. She shows Ben
the most recent transcripts and finds something surprising;:

» '"...Not sure how to export this; are you?"
* "Where is the button that makes a new list?"
* "Wait, do you even know where the slider is?"

* '"IfIcan't figure this out today, it's a real problem..."

It is clear that customers were having problems with the existing UI/UX, and weren't
upset because of a lack of features. Runkle and Hughan organized a mass UI/UX
overhaul, and their sales have never been better.

Of course, the science used in the last example was minimal, but it makes a point.
We tend to call people like Runkle drivers. Today's common stick-to-your-gut CEO
wants to make all decisions quickly and iterate over solutions until something works.
Dr. Hughan is much more analytical. She wants to solve the problem just as much as
Runkle, but she turns to user-generated data instead of her gut feeling for answers.
Data science is about applying the skills of the analytical mind and using them as a
driver would.

Both of these mentalities have their place in today's enterprises; however, it is
Hughan's way of thinking that dominates the ideas of data science —using data
generated by the company as her source of information, rather than just picking up a
solution and going with it.

[6]

Chapter 1

The data science Venn diagram

It is a common misconception that only those with a PhD or geniuses can understand
the math/programming behind data science. This is absolutely false. Understanding
data science begins with three basic areas:

* Mathy/statistics: This is the use of equations and formulas to perforanalysis

* Computer programming: This is the ability to use code to create outcomes
on computer

* Domain knowledge: This refers to understanding the problem domain
(medicine, finance, social science, d so on)

The following Venn diagram provides a visual representation of how these three
areas of data science intersect:

5\[‘\\\6 4,’:‘)((o ? o
Y‘\“\% % () S“é?{-

@0 Wy ig 7
W &W&'@ e
Data
Science

Danger Traditional

Zone!

Substantive
Expertise

The Venn diagram of data science

Those with hacking skills can conceptualize and program complicated algorithms
using computer languages. Having a math and statistics background allows you to
theorize and evaluate algorithms and tweak the existing procedures to fit specific
situations. Having substantive expertise (domain expertise) allows you to apply
concepts and results in a meaningful and effective way.

[71

How to Sound Like a Data Scientist

While having only two of these three qualities can make you intelligent, it will also
leave a gap. Let's say that you are very skilled in coding and have formal training in
day trading. You might create an automated system to trade in your place, but lack
the math skills to evaluate your algorithms. This will mean that you end up losing
money in the long run. It is only when you boost your skills in coding, math, and
domain knowledge that you can truly perform data science.

The quality that was probably a surprise for you was domain knowledge. It is really
just knowledge of the area you are working in. If a financial analyst started analyzing
data about heart attacks, they might need the help of a cardiologist to make sense of
a lot of the numbers.

Data science is the intersection of the three key areas we mentioned earlier. In order
to gain knowledge from data, we must be able to utilize computer programming

to access the data, understand the mathematics behind the models we derive, and,
above all, understand our analyses' place in the domain we are in. This includes the
presentation of data. If we are creating a model to predict heart attacks in patients,
is it better to create a PDF of information, or an app where you can type in numbers
and get a quick prediction? All these decisions must be made by the data scientist.

The intersection of math and coding is machine learning. This book will
look at machine learning in great detail later on, but it is important to
note that without the explicit ability to generalize any models or results
to a domain, machine learning algorithms remain just that—algorithms
& sitting on your computer. You might have the best algorithm to predict
e : .
cancer. You could be able to predict cancer with over 99% accuracy
based on past cancer patient data, but if you don't understand how to
apply this model in a practical sense so that doctors and nurses can
easily use it, your model might be useless.

Both computer programming and math are covered extensively in this book. Domain
knowledge comes with both the practice of data science and reading examples of
other people's analyses.

The math

Most people stop listening once someone says the word "math." They'll nod along in
an attempt to hide their utter disdain for the topic. This book will guide you through
the math needed for data science, specifically statistics and probability. We will use
these subdomains of mathematics to create what are called models.

A data model refers to an organized and formal relationship between elements of
data, usually meant to simulate a real-world phenomenon.

[8]

Chapter 1

Essentially, we will use math in order to formalize relationships between variables.
As a former pure mathematician and current math teacher, I know how difficult
this can be. I will do my best to explain everything as clearly as I can. Between the
three areas of data science, math is what allows us to move from domain to domain.
Understanding the theory allows us to apply a model that we built for the fashion
industry to a financial domain.

The math covered in this book ranges from basic algebra to advanced probabilistic
and statistical modeling. Do not skip over these chapters, even if you already
know these topics or you're afraid of them. Every mathematical concept that I will
introduce will be introduced with care and purpose, using examples. The math in
this book is essential for data scientists.

Example — spawner-recruit models

In biology, we use, among many other models, a model known as the spawner-
recruit model to judge the biological health of a species. It is a basic relationship
between the number of healthy parental units of a species and the number of new
units in the group of animals. In a public dataset of the number of salmon spawners
and recruits, the graph further down (titled spawner-recruit model) was formed to
visualize the relationship between the two. We can see that there definitely is some
sort of positive relationship (as one goes up, so does the other). But how can we
formalize this relationship? For example, if we knew the number of spawners in a
population, could we predict the number of recruits that the group would obtain,
and vice versa?

Essentially, models allow us to plug in one variable to get the other. Consider the
following example:

Recruits = 0.5 x Spawners + 60

In this example, let's say we knew that a group of salmon had 1.15 (in thousands)
spawners. Then, we would have the following:

Recruits = 0.5 % 1.15 + 60

Recruits = 60.575 (in thousands)

This result can be very beneficial to estimate how the health of a population
is changing. If we can create these models, we can visually observe how the
relationship between the two variables can change.

[o]

How to Sound Like a Data Scientist

There are many types of data models, including probabilistic and statistical models.
Both of these are subsets of a larger paradigm, called machine learning. The essential
idea behind these three topics is that we use data in order to come up with the best
model possible. We no longer rely on human instincts —rather, we rely on data, such
as that displayed in the following graph:

350
.
300 . *,
e o
. .e
L]
250 . *
o .
. e * o
g . .
5 o
5 200 . '.
@ - 7
.®
150 °
®
™
.
100
.
L 4
50
0 100 200 300 400 500 600
spawners

The spawner-recruit model visualized

The purpose of this example is to show how we can define relationships between
data elements using mathematical equations. The fact that I used salmon health

data was irrelevant! Throughout this book, we will look at relationships involving
marketing dollars, sentiment data, restaurant reviews, and much more. The main
reason for this is that I would like you (the reader) to be exposed to as many domains
as possible.

Math and coding are vehicles that allow data scientists to step back and apply their
skills virtually anywhere.

[10]

Chapter 1

Computer programming

Let's be honest: you probably think computer science is way cooler than math. That's
ok, I don't blame you. The news isn't filled with math news like it is with news on
technology. You don't turn on the TV to see a new theory on primes —rather, you
will see investigative reports on how the latest smartphone can take better photos of
cats, or something. Computer languages are how we communicate with machines
and tell them to do our bidding. A computer speaks many languages and, like a
book, can be written in many languages; similarly, data science can also be done

in many languages. Python, Julia, and R are some of the many languages that are
available to us. This book will focus exclusively on using Python.

Why Python?
We will use Python for a variety of reasons, listed as follows:
* Python is an extremely simple language to read and write, even if you've

never coded before, which will make future examples easy to understand
and read later on, even after you have read this book.

* Itis one of the most common languages, both in production and in an
academic setting (one of the fastest growing, as a matter of fact).

* The language's online community is vast and friendly. This means that a
quick search for the solution to a problem should yield many people who
have faced and solved similar (if not exactly the same) situations.

* Python has prebuilt data science modules that both the novice and the
veteran data scientist can utilize.

The last point is probably the biggest reason we will focus on Python. These prebuilt
modules are not only powerful, but also easy to pick up. By the end of the first few
chapters, you will be very comfortable with these modules. Some of these modules
include the following:

* pandas

* scikit-learn

* seaborn

* numpy/scipy

* requests (to mine data from the web)

* BeautifulSoup (for web-HTML parsing)

[11]

How to Sound Like a Data Scientist

Python practices

Before we move on, it is important to formalize many of the requisite coding skills in
Python.

In Python, we have variables that are placeholders for objects. We will focus on just a
few types of basic objects at first, as shown in the following table:

Object Type Example

int (an integer) 3,6,99,-34,34, 11111111

float (a decimal) 3.14159, 2.71, -0.34567

boolean (either True or False) e The statement "Sunday is a

weekend" is True

e The statement "Friday is a
weekend" is False

e The statement "pi is exactly
the ratio of a circle's
circumference to its diameter"
is True (crazy, right?)

string (text or words made up of "I love hamburgers" (by the way, who
characters) doesn't?)

"Matt is awesome"

A tweet is a string

list (a collection of objects) [1, 5.4, True, "apple"]

We will also have to understand some basic logistical operators. For these operators,
keep the Boolean datatype in mind. Every operator will evaluate to either True or
False. Let's take a look at the following operators:

Operators Example

== Evaluates to True if both sides are equal;
otherwise, it evaluates to False, as shown
in the following examples:

* 3 +4==7(will evaluate to True)

e 3-2==7(will evaluate to False)

< (less than) * 3<5(True)
e 5<3(False)
<= (less than or equal to) * 3<=3(True)

* 5<=3(False)

[12]

Chapter 1

Operators Example

> (greater than) * 3>5(False)
* 5>3(True)

>= (greater than or equal to) * 3>=3(True)
e 5>=7(False)

When coding in Python, I will use a pound sign (#) to create a "comment," which
will not be processed as code, but is merely there to communicate with the reader.
Anything to the right of a # sign is a comment on the code being executed.

Example of basic Python

In Python, we use spaces/ tabs to denote operations that belong to other lines of code.

The print True statement belongs to the if x + y == 15.3: line
% preceding it because it is tabbed right under it. This means that the
A
print statement will be executed if, and only if, x + y equals 15.3.

Note that the following list variable, my_1ist, can hold multiple types of objects.
This one has an int, a float, a boolean, and string inputs (in that order):

my list = [1, 5.7, True, "apples"]

len(my list) == 4 # 4 objects in the list
my list[0] == 1 # the first object

my list([1l] == 5.7 # the second object

In the preceding code, I used the 1en command to get the length of the list (which
was 4). Also, note the zero-indexing of Python. Most computer languages start
counting at zero instead of one. So, if I want the first element, I call index o, and if I
want the 95th element, I call index 94.

Example — parsing a single tweet

Here is some more Python code. In this example, I will be parsing some tweets about
stock prices (one of the important case studies in this book will be trying to predict
market movements based on popular sentiment regarding stocks on social media):

tweet = "RT @] o _n _dnger: $TWTR now top holding for Andor, unseating
SAAPL"

[13]

How to Sound Like a Data Scientist

words_in tweet = tweet.split(' ') # list of words in tweet
for word in words in tweet: # for each word in list
if "$" in word: # if word has a "cashtag"

print ("THIS TWEET IS ABOUT", word) # alert the user

I will point out a few things about this code snippet line by line, as follows:

First, we set a variable to hold some text (known as a string in Python).
In this example, the tweet in question is "RT @robdv: $TWTR now top
holding for Andor, unseating S$AAPL".

The words_in_tweet variable tokenizes the tweet (separates it by word). If
you were to print this variable, you would see the following;:
['RT',

'@robdv: ',

"STWIR',

'now',

'top',

'holding',

'for',

'Andor, ',

'unseating',

'$AAPL']

We iterate through this list of words; this is called a for loop. It just means
that we go through a list one by one.

Here, we have another if statement. For each word in this tweet, if the word
contains the $ character, it represents stock tickers on Twitter.

If the preceding if statement is True (that is, if the tweet contains a cashtag),
print it and show it to the user.

The output of this code will be as follows:

THIS TWEET IS ABOUT STWTR
THIS TWEET IS ABOUT SAAPL

We get this output as these are the only words in the tweet that use the cashtag.
Whenever I use Python in this book, I will ensure that I am as explicit as possible
about what I am doing in each line of code.

[14]

Chapter 1

Domain knowledge

As I mentioned earlier, domain knowledge focuses mainly on having knowledge of
the particular topic you are working on. For example, if you are a financial analyst
working on stock market data, you have a lot of domain knowledge. If you are a
journalist looking at worldwide adoption rates, you might benefit from consulting
an expert in the field. This book will attempt to show examples from several problem
domains, including medicine, marketing, finance, and even UFO sightings!

Does this mean that if you're not a doctor, you can't work with medical data? Of
course not! Great data scientists can apply their skills to any area, even if they aren't
fluent in it. Data scientists can adapt to the field and contribute meaningfully when
their analysis is complete.

A big part of domain knowledge is presentation. Depending on your audience, it can
matter greatly on how you present your findings. Your results are only as good as
your vehicle of communication. You can predict the movement of the market with
99.99% accuracy, but if your program is impossible to execute, your results will go
unused. Likewise, if your vehicle is inappropriate for the field, your results will go
equally unused.

Some more terminology

This is a good time to define some more vocabulary. By this point, you're probably
excitedly looking up a lot of data science material and seeing words and phrases I
haven't used yet. Here are some common terms that you are likely to encounter:

* Machine learning: This refers to giving computers the ability to learn
from data without explicit "rules" being given by a programmer. We have
seen the concept of machine learning earlier in this chapter as the union of
someone who has both coding and math skills. Here, we are attempting to
formalize this definition. Machine learning combines the power of computers
with intelligent learning algorithms in order to automate the discovery of
relationships in data and create powerful data models. Speaking of data
models, in this book, we will concern ourselves with the following two basic
types of data model:

o

Probabilistic model: This refers to using probability to find a
relationship between elements that includes a degree of randomness

Statistical model: This refers to taking advantage of statistical
theorems to formalize relationships between data elements in a
(usually) simple mathematical formula

[15]

How to Sound Like a Data Scientist

* Exploratory data analysis (EDA): This refers to preparing data in order to
standardize results and gain quick insights. EDA is concerned with data
visualization and preparation. This is where we turn unorganized data into
organized data and clean up missing/incorrect data points. During EDA, we
will create many types of plots and use these plots to identify key features

While both the statistical and probabilistic models can be run
_on computers and might be considered machine learning in
a that regard, we will keep these definitions separate, since
L= machine learning algorithms generally attempt to learn
relationships in different ways. We will take a look at the
statistical and probabilistic models in later chapters.

and relationships to exploit in our data models.

* Data mining: This is the process of finding relationships between elements
of data. Data mining is the part of data science where we try to find
relationships between variables (think the spawn-recruit model).

I have tried pretty hard not to use the term big data up until now. This is because I
think this term is misused, a lot. Big data is data that is too large to be processed by a
single machine (if your laptop crashed, it might be suffering from a case of big data).

The following diagram shows the relationship between these data science concepts:

/
/

[

// Data Science \

— —
7 T

hY

——

. ﬁagn_m_g Learm \\
A - SN

s

(/ Data / \ Data |
\ (Mining (Mocel[ing] /

—

~ §/
s .

T -
— — }

\ /

\
\ Statistics //
\"""-\.

-

\ ;;L- ~ / /]
\.. /%&u/)g‘/ ///
/
)/ -

The story so far

The preceding diagram is incomplete and is meant for visualization purposes only.

The state of data science (so far)

[16]

Chapter 1

Data science case studies

The combination of math, computer programming, and domain knowledge is
what makes data science so powerful. Oftentimes, it is difficult for a single person
to master all three of these areas. That's why it's very common for companies to
hire teams of data scientists instead of a single person. Let's look at a few powerful
examples of data science in action and their outcomes.

Case study — automating government
paper pushing

Social security claims are known to be a major hassle for both the agent reading it
and the person who wrote the claim. Some claims take over two years to get resolved
in their entirety, and that's absurd! Let's look at the following diagram, which shows
what goes into a claim:

B. To be completed by the claimant

PLEASE PRINT

Please Answer the Following Questions:

(1) Have you been treated or examined by a doctor (other than a doctor at a hospital)
since the above date? ! 3 [] Yes []No
(If yes, please list the names, addresses and telephone numbers of doctors who have treated or examined you since the above
date. Also list the dates of treatment or examination. If possible, send updated reports from these doctors to the Administrative
Law Judge before the date of your hearing.)

DOCTORS NAME(S) ADDRESS(ES) & TELEPHONE NO.(S) DATE(S)

(2) What have these doctors told you about your condition?

(3) Have you been hospitalized since the above date? P> [] Yes [No
(If yes, please list the name and address of the hospital. Also, explain why you were hospitalized and what treatment you
received.)

Sample social security form

[17]

How to Sound Like a Data Scientist

Not bad. It's mostly just text, though. Fill this in, then that, then this, and so on. You
can see how it would be difficult for an agent to read these all day, form after form.
There must be a better way!

Well, there is. Elder Research Inc. parsed this unorganized data and was able to
automate 20% of all disability social security forms. This means that a computer
could look at 20% of these written forms and give its opinion on the approval.

Not only that— the third-party company that is hired to rate the approvals of the
forms actually gave the machine-graded forms a higher grade than the human forms.
So, not only did the computer handle 20% of the load on average, it also did better
than a human.

Fire all humans, right?

Before I get a load of angry emails claiming that data science is bringing about the end
of human workers, keep in mind that the computer was only able to handle 20% of
the load. This means that it probably performed terribly on 80% of the forms! This is
because the computer was probably great at simple forms. The claims that would have
taken a human minutes to compute took the computer seconds. But these minutes add
up, and before you know it, each human is being saved over an hour a day!

Forms that might be easy for a human to read are also likely easy for the computer.
It's when the forms are very terse, or when the writer starts deviating from the usual
grammar, that the computer starts to fail. This model is great because it lets the
humans spend more time on those difficult claims and gives them more attention
without getting distracted by the sheer volume of papers.

Note that I used the word "model." Remember that a model is a
relationship between elements. In this case, the relationship is
g between written words and the approval status of a claim.

[18]

Chapter 1

Case study — marketing dollars

A dataset shows the relationships between TV, radio, and newspaper sales. The goal
is to analyze the relationships between the three different marketing mediums and
how they affect the sale of a product. In this case, our data is displayed in the form of
a table. Each row represents a sales region, and the columns tell us how much money
was spent on each medium, as well as the profit that was gained in that region. For
example, from the following table, we can see that in the third region, we spent
$17,200 on TV advertising and sold 9,300 widgets:

Usually, the data scientist must ask for units and the scale. In this
. case, I will tell you that the TV, radio, and newspaper categories are
& measured in "thousands of dollars" and the sales in "thousands of
e widgets sold." This means that in the first region, $230,100 was spent
on TV advertising, $37,800 on radio advertising, and $69,200 on
newspaper advertising. In the same region, 22,100 items were sold.

TV Radio | Newspaper | Sales
1/230.1|37.8 |69.2 221
2445 |39.3 |45.1 104
3/17.2 |459 |69.3 9.3
4/151.5(41.3 |58.5 18.5
5/180.8/10.8 |58.4 12.9

Adpvertising budgets' data

If we plot each variable against the sales, we get the following graph:

import pandas as pd

import seaborn as sns

$matplotlib inline

data = pd.read csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.
csv', index col=0)

data.head ()

sns.pairplot (data, x vars=['TV', 'radio', 'newspaper'], y vars='sales',
height=4.5, aspect=0.7)

[19]

How to Sound Like a Data Scientist

The output is as follows:

2 4 . '®

20 ALY

15 . =‘ o : -

sales
'

10 1 3,550 o

0 100 200 0 0 10 20 33 4 50 0 25 S50 75 100
™ radio newspaper

Results - graphs of advertising budgets

Note how none of these variables form a very strong line, and therefore they might
not work well in predicting sales on their own. TV comes closest in forming an
obvious relationship, but even that isn't great. In this case, we will have to create

a more complex model than the one we used in the spawner-recruiter model and
combine all three variables in order to model sales.

This type of problem is very common in data science. In this example, we are
attempting to identify key features that are associated with the sales of a product. If
we can isolate these key features, then we can exploit these relationships and change
how much we spend on advertising in different places with the hope of increasing
our sales.

[20]

Chapter 1

Case study — what's in a job description?

Looking for a job in data science? Great! Let me help. In this case study, I have
"scraped" (taken from the web) 1,000 job descriptions for companies that are actively
hiring data scientists. The goal here is to look at some of the most common keywords
that people use in their job descriptions, as shown in the following screenshot:

Machine Learning Quantitative Analyst

Bloomberg - 282 reviews - New York, NY

The Machine Learning Quantitative Analyst will work in Bloomberg's Enterprise Solutions area
and work collaboratively to build a liquidity tool for banks,...

8 days ago - email

Sponsored

Save lives with machine learning

Blue Owl - San Francisco, CA

Requirements for all data scientists. Expert in Python and core libraries used by data scientists
(Numpy, Scipy, Pandas, Scikit-learn, Matplotlib/Seaborn, efc.)...

30+ days ago - email

Sponsored

Data Scientist

Indeed - 132 reviews - Austin, TX

How a Data Scientist works. As a Data Scientist at Indeed your role is to follow the data. We are
looking for a mixture between a statistician, scientist,...

Easily apply

30+ days ago - email

Sponsored

An example of data scientist job listing

Note the second one asking for core Python libraries;
s we will talk about these later on in this book.

In the following Python code, the first two imports are used to grab web data from
the website http://indeed. com/, and the third import is meant to simply count the
number of times a word or phrase appears, as shown in the following code:

import requests
from bs4 import BeautifulSoup
from sklearn.feature_extraction.text import CountVectorizer

grab postings from the web

texts = []

for i in range(0,1000,10): # cycle through 100 pages of indeed job
resources

[21]

http://indeed.com/

How to Sound Like a Data Scientist

soup = BeautifulSoup (requests.get ('http://www.indeed.com/jobs?g=data+
scientisté&start="+str(i)) .text)

texts += [a.text for a in soup.findAll('span', {'class':'summary'})]
print (type (texts))

print (texts[0]) # first job description

All that this loop is doing is going through 100 pages of job descriptions, and for each
page, grabbing each job description. The important variable here is texts, which is a
list of over 1,000 job descriptions, as shown in the following code:

type (texts) # == list

vect = CountVectorizer (ngram range=(1,2), stop words='english')

Get basic counts of one and two word phrases

matrix = vect.fit_ transform(texts)

fit and learn to the vocabulary in the corpus

print len(vect.get feature names()) # how many features are there

There are 10,587 total one and two words phrases in my case!!

Since web pages are scraped in real-time and these pages may change
since this code is run, you may get different number than 10587.

I have omitted some code here, but it exists in the GitHub repository for this book.
The results are as follows (represented as the phrase and then the number of times it
occurred):

[22]

Chapter 1

1as857

data 2641

analytics 857
learning 57@

machine 545

machine learning 5292
science 414

business 398
experience 387
marketing 313
scientist 296

data science 293
data scientist 287
marketing analytics 265
scientists 258
statistics 241

data scientists 248
glgorithms 238

data analytics 229
experience data 225
applisd 215

using 287

relevant 283
learning algorithms 282
analytics data 197
best 186

The following list shows some things that we should mention:

"Machine learning" and "experience" are at the top of the list. Experience
comes with practice. A basic idea of machine learning comes with this book.

These words are followed closely by statistical words implying a knowledge
of math and theory.

The word "team" is very high up, implying that you will need to work with a
team of data scientists; you won't be a lone wolf.

Computer science words such as "algorithms" and "programming" are
prevalent.

The words "techniques", "understanding", and "methods" imply a more
theoretical approach, unrelated to any single domain.

The word "business" implies a particular problem domain.

[23]

How to Sound Like a Data Scientist

There are many interesting things to note about this case study, but the biggest take
away is that there are many keywords and phrases that make up a data science role.
It isn't just math, coding, or domain knowledge; it truly is a combination of these
three ideas (Whether exemplified in a single person or across a multiperson team)
that makes data science possible and powerful.

Summary

At the beginning of this chapter, I posed a simple question: what's the catch of data
science? Well, there is one. It isn't all fun, games, and modeling. There must be a
price for our quest to create ever-smarter machines and algorithms. As we seek new
and innovative ways to discover data trends, a beast lurks in the shadows. I'm not
talking about the learning curve of mathematics or programming, nor am I referring
to the surplus of data. The Industrial Age left us with an ongoing battle against
pollution. The subsequent Information Age left behind a trail of big data. So, what
dangers might the Data Age bring us?

The Data Age can lead to something much more sinister — the dehumanization of
individuals through mass data.

More and more people are jumping head-first into the field of data science, most
with no prior experience of math or CS, which, on the surface, is great. Average data
scientists have access to millions of dating profiles' data, tweets, online reviews, and
much more in order to jump start their education.

However, if you jump into data science without the proper exposure to theory or
coding practices, and without respect for the domain you are working in, you face
the risk of oversimplifying the very phenomenon you are trying to model.

For example, let's say you want to automate your sales pipeline by building a
simplistic program that looks at LinkedIn for very specific keywords in a person's
LinkedIn profile. You could use the following code to do this:

keywords = ["Saas", "Sales", "Enterprise"]

Great. Now, you can scan LinkedIn quickly to find people who match your criteria.
But what about that person who spells out "Software as a Service," instead of "SaaS,"
or misspells "enterprise" (it happens to the best of us; I bet someone will find a typo
in my book)? How will your model figure out that these people are also a good
match? They should not be left behind just because the cut-corners data scientist has
overgeneralized people in such an easy way.

[24]

Chapter 1

The programmer chose to simplify their search for another human by looking for three
basic keywords and ended up with a lot of missed opportunities left on the table.

In the next chapter, we will explore the different types of data that exist in the world,
ranging from free-form text to highly structured row/column files. We will also look
at the mathematical operations that are allowed for different types of data, as well as
deduce insights based on the form of the data that comes in.

[25]

Types of Data

Now that we have had a basic introduction to the world of data science and
understand why the field is so important, let's take a look at the various ways
in which data can be formed. Specifically, in this chapter, we will look at the
following topics:

e Structured versus unstructured data
* Quantitative versus qualitative data

e The four levels of data

We will dive further into each of these topics by showing examples of how data
scientists look at and work with data. The aim of this chapter is to familiarize
ourselves with the fundamental ideas underpinning data science.

Flavors of data

In the field, it is important to understand the different flavors of data for several
reasons. Not only will the type of data dictate the methods used to analyze and extract
results, but knowing whether the data is unstructured, or perhaps quantitative, can
also tell you a lot about the real-world phenomenon being measured.

The first thing to note is my use of the word data. In the last chapter, I defined data
as merely being a collection of information. This vague definition exists because we
may separate data into different categories and need our definition to be loose.

The next thing to remember while we go through this chapter is that for the most
part, when I talk about the type of data, I will refer to either a specific characteristic of a
dataset or to the entire dataset as a whole. I will be very clear about which one I refer
to at any given time.

[27]

Types of Data

Why look at these distinctions?

It might seem worthless to stop and think about what type of data we have before
getting into the fun stuff, such as statistics and machine learning, but this is arguably
one of the most important steps you need to take to perform data science.

The same principle applies to data science. When given a dataset, it is tempting

to jump right into exploring, applying statistical models, and researching the
applications of machine learning in order to get results faster. However, if you don't
understand the type of data that you are working with, then you might waste a lot of
time applying models that are known to be ineffective with that specific type of data.

When given a new dataset, I always recommend taking about an hour (usually less)
to make the distinctions mentioned in the following sections.

Structured versus unstructured data

The distinction between structured and unstructured data is usually the first
question you want to ask yourself about the entire dataset. The answer to this
question can mean the difference between needing three days or three weeks of time
to perform a proper analysis.

The basic breakdown is as follows (this is a rehashed definition of organized and
unorganized data in the first chapter):

* Structured (organized) data: This is data that can be thought of as
observations and characteristics. It is usually organized using a table method
(rows and columns).

* Unstructured (unorganized) data: This data exists as a free entity and does
not follow any standard organization hierarchy.

Here are a few examples that could help you differentiate between the two:

* Most data that exists in text form, including server logs and Facebook posts,
is unstructured

* Scientific observations, as recorded by careful scientists, are kept in a very
neat and organized (structured) format

* A genetic sequence of chemical nucleotides (for example, ACGTATTGCA) is
unstructured, even if the order of the nucleotides matters, as we cannot form
descriptors of the sequence using a row/column format without taking a
further look

[28]

Chapter 2

Structured data is generally thought of as being much easier to work with and
analyze. Most statistical and machine learning models were built with structured
data in mind and cannot work on the loose interpretation of unstructured data. The
natural row and column structure is easy to digest for human and machine eyes. So,
why even talk about unstructured data? Because it is so common! Most estimates
place unstructured data as 80-90% of the world's data. This data exists in many
forms and, for the most part, goes unnoticed by humans as a potential source of data.
Tweets, emails, literature, and server logs are generally unstructured forms of data.

While a data scientist likely prefers structured data, they must be able to deal with
the world's massive amounts of unstructured data. If 90% of the world's data is
unstructured, that implies that about 90% of the world's information is trapped in a
difficult format.

So, with most of our data existing in this free-form format, we must turn to pre-
analysis techniques, called pre-processing, in order to apply structure to at least a
part of the data for further analysis. The next chapter will deal with pre-processing in
great detail; for now, we will consider the part of pre-processing wherein we attempt
to apply transformations to convert unstructured data into a structured counterpart.

Example of data pre-processing

When looking at text data (which is almost always considered unstructured), we
have many options to transform the set into a structured format. We may do this
by applying new characteristics that describe the data. A few such characteristics
are as follows:

* Word/phrase count
* The existence of certain special characters
* The relative length of text
* Picking out topics
I will use the following tweet as a quick example of unstructured data, but you

may use any unstructured free-form text that you like, including tweets and
Facebook posts:

"This Wednesday morn, are you early to rise? Then look East. The Crescent Moon joins
Venus & Saturn. Afloat in the dawn skies."

It is important to reiterate that pre-processing is necessary for this tweet because a
vast majority of learning algorithms require numerical data (which we will get into
after this example).

[29]

Types of Data

More than requiring a certain type of data, pre-processing allows us to explore
features that have been created from the existing features. For example, we can
extract features such as word count and special characters from the mentioned tweet.
Now, let's take a look at a few features that we can extract from the text.

Word/phrase counts

We may break down a tweet into its word/phrase count. The word this appears in
the tweet once, as does every other word. We can represent this tweet in a structured
format as follows, thereby converting the unstructured set of words into a row/
column format:

This | Wednesday | morn | are | you

Word count | 1 1 1 1 1

Note that to obtain this format, we can utilize scikit-learn's countvectorizer, which
we saw in the previous chapter.

Presence of certain special characters

We may also look at the presence of special characters, such as the question mark
and exclamation mark. The appearance of these characters might imply certain
ideas about the data that are otherwise difficult to know. For example, the fact that
this tweet contains a question mark might strongly imply that this tweet contains a
question for the reader. We might append the preceding table with a new column,
as follows:

This | Wednesday morn | are | you
Word Count | 1 1 1 1 1

The relative length of text

This tweet is 125 characters long:

len("This Wednesday morn, are you early to rise? Then look East. The
Crescent Moon joins Venus & Saturn. Afloat in the dawn skies.")

get the length of this text (number of characters for a string)

125

[30]

Chapter 2

The average tweet, as discovered by analysts, is about 30 characters in length. So, we
might impose a new characteristic, called relative length (which is the length of the
tweet divided by the average length), telling us the length of this tweet compared to
the average tweet. This tweet is actually 4.03 times longer than the average tweet, as
shown here:

125/30 =4.03

We can add yet another column to our table using this method:

This | Wednesday | morn |are | you | ? | Relative length
Word count | 1 1 1 1 1 1 |4.03

Picking out topics
We can pick out some topics of the tweet to add as columns. This tweet is about
astronomy, so we can add another column, as illustrated here:

. Relative .
?
This | Wednesday | morn | are | you | 7 length Topic
Word count | 1 1 1 1 1 1 |4.03 astronomy

And just like that, we can convert a piece of text into structured/organized data
that's ready for use in our models and exploratory analysis.

The topic is the only extracted feature we looked at that is not automatically
derivable from the tweet. Looking at word count and tweet length in Python is easy.
However, more advanced models (called topic models) are able to derive and predict
topics of natural text as well.

Being able to quickly recognize whether your data is structured or unstructured
can save hours or even days of work in the future. Once you are able to discern
the organization of the data presented to you, the next question is aimed at the
individual characteristics of the dataset.

Quantitative versus qualitative data

When you ask a data scientist, "what type of data is this?", they will usually assume
that you are asking them whether or not it is mostly quantitative or qualitative. It is
likely the most common way of describing the specific characteristics of a dataset.

[31]

Types of Data

For the most part, when talking about quantitative data, you are usually (not always)
talking about a structured dataset with a strict row/column structure (because we
don't assume unstructured data even has any characteristics). All the more reason
why the pre-processing step is so important.

These two data types can be defined as follows:

Quantitative data: This data can be described using numbers, and basic
mathematical procedures, including addition, are possible on the set.

Qualitative data: This data cannot be described using numbers and basic
mathematics. This data is generally thought of as being described using
natural categories and language.

Example — coffee shop data

Say that we were processing observations of coffee shops in a major city using the
following five descriptors (characteristics):

Data: Coffee Shop

Name of coffee shop

Revenue (in thousands of dollars)
Zip code

Average monthly customers

Country of coffee origin

Each of these characteristics can be classified as either quantitative or qualitative, and
that simple distinction can change everything. Let's take a look at each one:

Name of a coffee shop: Qualitative
The name of a coffee shop is not expressed as a number, and we cannot
perform mathematical operations on the name of the shop.

Revenue: Quantitative

How much money a coffee shop brings in can definitely be described using a
number. Also, we can do basic operations, such as adding up the revenue for
12 months to get a year's worth of revenue.

[32]

Chapter 2

Zip code: Qualitative

This one is tricky. A zip code is always represented using numbers, but what
makes it qualitative is that it does not fit the second part of the definition of
quantitative —we cannot perform basic mathematical operations on a zip
code. If we add together two zip codes, it is a nonsensical measurement. We
don't necessarily get a new zip code and we definitely don't get "double the
zip code."

Average monthly customers: Quantitative
Again, describing this factor using numbers and addition makes sense. Add
up all of your monthly customers and you get your yearly customers.

Country of coffee origin: Qualitative

We will assume this is a very small coffee shop with coffee from a single
origin. This country is described using a name (Ethiopian, Colombian), and
not numbers.

A couple of important things to note:

Even though a zip code is being described using numbers, it is not
quantitative. This is because you can't talk about the sum of all zip codes or
an average zip code. These are nonsensical descriptions.

Whenever a word is used to describe a characteristic, it is a qualitative factor.

If you are having trouble identifying which is which, basically, when trying to
decide whether or not the data is qualitative or quantitative, ask yourself a few basic
questions about the data characteristics:

Can you describe it using numbers?

o

No? It is qualitative.

o

Yes? Move on to the next question.

Does it still make sense after you add them together?

o

No? They are qualitative.

o

Yes? You probably have quantitative data.

This method will help you to classify most, if not all, data into one of these two
categories.

[33]

Types of Data

The difference between these two categories defines the types of questions you may
ask about each column. For a quantitative column, you may ask questions such as
the following:
* What is the average value?
* Does this quantity increase or decrease over time (if time is a factor)?
* Is there a threshold where if this number became too high or too low, it
would signal trouble for the company?

For a qualitative column, none of the preceding questions can be answered.
However, the following questions only apply to qualitative values:

* Which value occurs the most and the least?

* How many unique values are there?

* What are these unique values?

Example — world alcohol consumption data

The World Health Organization (WHO) released a dataset describing the average
drinking habits of people in countries across the world. We will use Python and the
data exploration tool, pandas, in order to gain more insight:

import pandas as pd

read in the CSV file from a URL

drinks = pd.read csv('https://raw.githubusercontent.com/sinanuozdemir/
principles of data science/master/data/chapter 2/drinks.csv')

examine the data's first five rows
drinks.head () # print the first 5 rows

These three lines have done the following:

* Imported pandas, which will be referred to as pd in the future
* Read in a comma-separated value (CSV) file as a variable called drinks

e (Called a method, head, that reveals the first five rows of the dataset

[Note the neat row/column structure a CSV comes in.]

[34]

Chapter 2

Let's have a look at the following table:

country beer_servings | spirit_servings | wine_servings | total_litres_of_pure_alcohol | continent
0| Afghanistan | 0 0 0 0.0 AS
1| Albania 89 132 54 4.9 EU
2 | Algeria 25 0 14 0.7 AF
3 | Andorra 245 138 312 12.4 EU
4 | Angola 217 57 45 59 AF

The preceding table lists the first five rows of data from the drink.csv file. We have
six different columns that we are working with in this example:

* country: Qualitative

* beer servings: Quantitative

* spirit servings: Quantitative

* wine servings: Quantitative

* total litres of pure alcohol:Quantitative

* continent: Qualitative

Let's look at the qualitative column continent. We can use pandas in order to

get some basic summary statistics about this non-numerical characteristic. The
describe () method is being used here, which first identifies whether the column
is likely to be quantitative or qualitative, and then gives basic information about the
column as a whole. This is done as follows:

drinks['continent'] .describe ()
>> count 170
>> unique 5
>> top AF
>> freq 53

This reveals that the WHO has gathered data about five unique continents, the most

frequent being AF (Africa), which occurred 53 times in the 193 observations.

If we take a look at one of the quantitative columns and call the same method, we
can see the difference in output, as shown here:

drinks['beer servings'] .describe ()

[35]

Types of Data

The output is as follows:

count 193.000000
mean 106.160622
std 101.143103
min 0.000000
25% 20.000000
50% 76.000000
75% 188.000000
max 376.000000

Now, we can look at the mean (average) beer serving per person per country
(106.2 servings), as well as the lowest beer serving, zero, and the highest beer
serving recorded, 376 (that's more than a beer a day).

Digging deeper
Quantitative data can be broken down one step further into discrete and
continuous quantities.

These can be defined as follows:

* Discrete data: This describes data that is counted. It can only take on
certain values.

Examples of discrete quantitative data include a dice roll, because it can only
take on six values, and the number of customers in a coffee shop, because
you can't have a real range of people.

¢ Continuous data: This describes data that is measured. It exists on an infinite
range of values.

A good example of continuous data would be a person's weight, because
it can be 150 pounds or 197.66 pounds (note the decimals). The height of
a person or building is a continuous number because an infinite scale of
decimals is possible. Other examples of continuous data would be time
and temperature.

The road thus far

So far in this chapter, we have looked at the differences between structured and
unstructured data, as well as between qualitative and quantitative characteristics.
These two simple distinctions can have drastic effects on the analysis that is
performed. Allow me to summarize before moving on to the second half of this

chapter.

[36]

Chapter 2

Data as a whole can either be structured or unstructured, meaning that the data
can either take on an organized row/column structure with distinct features that
describe each row of the dataset, or exist in a free-form state that usually must be
pre-processed into a form that is easily digestible.

If data is structured, we can look at each column (feature) of the dataset as being
either quantitative or qualitative. Basically, can the column be described using
mathematics and numbers, or not? The next part of this chapter will break down
data into four very specific and detailed levels. At each order, we will apply more
complicated rules of mathematics, and in turn, we can gain a more intuitive and
quantifiable understanding of the data.

The four levels of data

It is generally understood that a specific characteristic (feature/column) of structured
data can be broken down into one of four levels of data. These levels are as follows:
¢ The nominal level
e The ordinal level
e The interval level
e The ratio level
As we move down the list, we gain more structure and, therefore, more returns
from our analysis. Each level comes with its own accepted practice in measuring the

center of the data. We usually think of the mean/average as being an acceptable
form of a center. However, this is only true for a specific type of data.

The nominal level

The first level of data, the nominal level, consists of data that is described purely

by name or category. Basic examples include gender, nationality, species, or yeast
strain in a beer. They are not described by numbers and are therefore qualitative. The
following are some examples:

* A type of animal is on the nominal level of data. We may also say that if you
are a chimpanzee, then you belong to the mammalian class as well.
* A part of speech is also considered on the nominal level of data. The word

she is a pronoun, and it is also a noun.

Of course, being qualitative, we cannot perform any quantitative mathematical
operations, such as addition or division. These would not make any sense.

[37]

Types of Data

Mathematical operations allowed

We cannot perform mathematics on the nominal level of data except the basic
equality and set membership functions, as shown in the following two examples:

* Being a tech entrepreneur is the same as being in the tech industry, but not the
other way around

* A figure described as a square falls under the description of being a
rectangle, but not the other way around

Measures of center

A measure of center is a number that describes what the data tends to. It is
sometimes referred to as the balance point of the data. Common examples include
the mean, median, and mode.

In order to find the center of nominal data, we generally turn to the mode (the

most common element) of the dataset. For example, look back at the WHO alcohol
consumption data. The most common continent surveyed was Africa, making that a
possible choice for the center of the continent column.

Measures of the center, such as the mean and median, do not make sense at this level
as we cannot order the observations or even add them together.

What data is like at the nominal level

Data at the nominal level is mostly categorical in nature. Because, generally, we can
only use words to describe the data, it can be lost in translation between countries,
or can even be misspelled.

While data at this level can certainly be useful, we must be careful about what
insights we may draw from them. With only the mode as a basic measure of center,
we are unable to draw conclusions about an average observation. This concept does
not exist at this level. It is only at the next level that we may begin to perform true
mathematics on our observations.

[38]

Chapter 2

The ordinal level

The nominal level did not provide us with much flexibility in terms of mathematical
operations due to one seemingly unimportant fact: we could not order the
observations in any natural way. Data in the ordinal level provides us with a rank
order, or the means to place one observation before the other. However, it does not
provide us with relative differences between observations, meaning that while we
may order the observations from first to last, we cannot add or subtract them to get
any real meaning.

Examples

The Likert is among the most common ordinal level scales. Whenever you are
given a survey asking you to rate your satisfaction on a scale from 1 to 10, you are
providing data at the ordinal level. Your answer, which must fall between 1 and 10,
can be ordered: eight is better than seven, while three is worse than nine.

However, differences between the numbers do not make much sense. The difference
between a seven and a six might be different from the difference between a two and
a one.

Mathematical operations allowed

We are allowed much more freedom on this level in mathematical operations. We
inherit all mathematics from the ordinal level (equality and set membership), and we
can also add the following to the list of operations allowed in the nominal level:

* Ordering

* Comparison

Ordering refers to the natural order provided to us by the data. However, this can be
tricky to figure out sometimes. When speaking about the spectrum of visible light,
we can refer to the names of colors —Red, Orange, Yellow, Green, Blue, Indigo, and
Violet. Naturally, as we move from left to right, the light is gaining energy and other
properties. We may refer to this as a natural order:

Red Orange Yellow Green Blue Indigo Violet

The natural order of color

[39]

Types of Data

However, if needed, an artist may impose another order on the data, such as sorting
the colors based on the cost of the material to make said color. This could change the
order of the data, but as long as we are consistent in what defines the order, it does
not matter what defines it.

Comparisons are another new operation allowed at this level. At the ordinal level, it
would not make sense to say that one country was naturally better than another or
that one part of speech is worse than another. At the ordinal level, we can make these
comparisons. For example, we can talk about how putting a "7" on a survey is worse
than putting a "10".

Measures of center

At the ordinal level, the median is usually an appropriate way of defining the center
of the data. The mean, however, would be impossible because the division is not
allowed at this level. We can also use the mode as we could at the nominal level.

We will now look at an example of using the median.

Imagine you have conducted a survey among your employees asking "how happy are
you to be working here on a scale from 1-5?," and your results are as follows:

Let's use Python to find the median of this data. It is worth noting that most people
would argue that the mean of these scores would work just fine. The reason that the
mean would not be as mathematically viable is that if we subtract/add two scores,
say a score of four minus a score of two, then the difference of two doesn't really
mean anything. If addition/subtraction among the scores doesn't make sense, the
mean won't make sense either:

import numpy
results = [5, 4, 3, 4, 5, 3, 2, 5,3, 2,1, 4,5, 3, 4, 4, 5, 4, 2, 1,
4, 5, 4, 3, 2, 4, 4, 5, 4, 3, 2, 1]

sorted results = sorted(results)

print (sorted results)

[40]

Chapter 2

print (numpy.mean (results)) # == 3.4375
print (numpy.median (results)) # == 4.0

[The ' ' ' (triple apostrophe) denotes a longer (over two lines)]
v

comment. It acts in a way similar to #.

It turns out that the median is not only more sound but makes the survey results
look much better.

Quick recap and check

So far, we have seen half of the levels of data:

e The nominal level

¢ The ordinal level

At the nominal level, we deal with data usually described using vocabulary (but
sometimes with numbers), with no order and little use of mathematics.

At the ordinal level, we have data that can be described with numbers, and we also

have a "natural" order, allowing us to put one in front of the other.

Let's try to classify the following example as either ordinal or nominal (the answers

are at the end of this chapter):

* The origin of the beans in your cup of coffee

* The place someone receives after completing a foot race

* The metal used to make the medal that they receive after placing in said race

* The telephone number of a client

* How many cups of coffee you drink in a day

[41]

Types of Data

The interval level

Now, we are getting somewhere interesting. At the interval level, we are beginning
to look at data that can be expressed through very quantifiable means, and where
much more complicated mathematical formulas are allowed. The basic difference
between the ordinal level and the interval level is, well, just that difference.

Data at the interval level allows meaningful subtraction between data points.

Example

Temperature is a great example of data at the interval level. If it is 100 degrees
Fahrenheit in Texas and 80 degrees Fahrenheit in Istanbul, Turkey, then Texas is
20 degrees warmer than Istanbul. This simple example allows for so much more
manipulation at this level than previous examples.

(Non) Example

It seems as though the example in the ordinal level (using the one to five survey)
tits the bill of the interval level. However, remember that the difference between the
scores (when you subtract them) does not make sense; therefore, this data cannot be
called at the interval level.

Mathematical operations allowed

We can use all the operations allowed on the lower levels (ordering, comparisons,
and so on), along with two other notable operations:

e Addition

e Subtraction

The allowance of these two operations allows us to talk about data at this level in a
whole new way.

Measures of center

At this level, we can use the median and mode to describe this data. However,
usually the most accurate description of the center of data would be the arithmetic
mean, more commonly referred to as simply the mean. Recall that the definition of
the mean requires us to add together all the measurements. At the previous levels, an
addition was meaningless. Therefore, the mean would have lost extreme value. It is
only at the interval level and above that the arithmetic mean makes sense.

We will now look at an example of using the mean.

[42]

Chapter 2

Suppose we look at the temperature of a fridge containing a pharmaceutical
company's new vaccine. We measure the temperature every hour with the following
data points (in Fahrenheit):

31, 32, 32, 31, 28, 29, 31, 38, 32, 31, 30, 29, 30, 31, 26
Using Python again, let's find the mean and median of the data:

import numpy
temps = [31, 32, 32, 31, 28, 29, 31, 38, 32, 31, 30, 29, 30, 31, 26]
print (numpy.mean (temps))

print (numpy.median (temps))

Note how the mean and median are quite close to each other and that both are
around 31 degrees. The question, on average, how cold is the fridge?, has an answer of
about 31. However, the vaccine comes with a warning:

"Do not keep this vaccine at a temperature under 29 degrees."

Note that the temperature dropped below 29 degrees at least twice, but you ended
up assuming that it isn't enough for it to be detrimental.

This is where the measure of variation can help us understand how bad the fridge
situation can be.

Measures of variation

This is something new that we have not yet discussed. It is one thing to talk about the
center of the data but, in data science, it is also very important to mention how "spread
out" the data is. The measures that describe this phenomenon are called measures of
variation. You have likely heard of "standard deviation" from your statistics classes.
This idea is extremely important, and I would like to address it briefly.

A measure of variation (such as the standard deviation) is a number that attempts to
describe how spread out the data is.

Along with a measure of center, a measure of variation can almost entirely describe a
dataset with only two numbers.

[43]

Types of Data

Standard deviation
Arguably, the standard deviation is the most common measure of variation of
data at the interval level and beyond. The standard deviation can be thought of
as the "average distance a data point is at from the mean." While this description
is technically and mathematically incorrect, it is a good way to think about it. The
formula for standard deviation can be broken down into the following steps:

1. Find the mean of the data

2. For each number in the dataset, subtract it from the mean and then square it

3. Find the average of each square difference

4. Take the square root of the number obtained in Step 3, and this is the

standard deviation

Notice how, in the preceding steps, we do actually take an arithmetic mean as one of
the steps.

For example, look back at the temperature dataset. Let's find the standard deviation
of the dataset using Python:

import numpy
temps = [31, 32, 32, 31, 28, 29, 31, 38, 32, 31, 30, 29, 30, 31, 26]
mean = numpy.mean (temps) # == 30.73

squared differences = []
empty list o squared differences

for temperature in temps:
difference = temperature - mean

how far is the point from the mean

squared difference = difference**2
square the difference

squared differences.append (squared difference)
add it to our list

average squared difference = numpy.mean (squared differences)
This number is also called the "Variance"

standard deviation = numpy.sqgrt (average squared difference)

[44]

Chapter 2

We did it!

print (standard deviation) # == 2.5157

All of this code led to us finding out that the standard deviation of the dataset
is around 2.5, meaning that "on average," a data point is 2.5 degrees off from the
average temperature of around 31 degrees, meaning that the temperature could
likely dip below 29 degrees again in the near future.

The reason we want the "square difference" between each

point and the mean, and not the "actual difference", is because
= squaring the value actually puts emphasis on outliers — data

points that are abnormally far away.

Measures of variation give us a very clear picture of how spread out or dispersed our
data is. This is especially important when we are concerned with ranges of data and
how data can fluctuate (think percentage return on stocks).

The big difference between data at this level and at the next level lies in something
that is not obvious.

Data at the interval level does not have a "natural starting point or a natural zero."
However, being at zero degrees Celsius does not mean that you have "no temperature".

The ratio level

Finally, we will take a look at the ratio level. After moving through three different
levels with differing levels of allowed mathematical operations, the ratio level proves
to be the strongest of the four.

Not only can we define order and difference, but the ratio level also allows us to
multiply and divide as well. This might seem like not much to make a fuss over but it
changes almost everything about the way we view data at this level.

Examples

While Fahrenheit and Celsius are stuck in the interval level, the Kelvin scale of
temperature boasts a natural zero. A measurement of zero Kelvin literally means the
absence of heat. It is a non-arbitrary starting zero. We can actually scientifically say
that 200 Kelvin is twice as much heat as 100 Kelvin.

Money in the bank is at the ratio level. You can have "no money in the bank" and it
makes sense that $200,000 is "twice as much as" $100,000.

[45]

Types of Data

Many people may argue that Celsius and Fahrenheit also have a
starting point (mainly because we can convert from Kelvin in to either

of the two). The real difference here might seem silly, but because the
’ conversion to Celsius and Fahrenheit make the calculations go into
the negative, it does not define a clear and "natural" zero.

Measures of center

The arithmetic mean still holds meaning at this level, as does a new type of mean
called the geometric mean. This measure is generally not used as much, even at
the ratio level, but is worth mentioning. It is the square root of the product of all
the values.

For example, in our fridge temperature data, we can calculate the geometric mean
as follows:

import numpy
temps = [31, 32, 32, 31, 28, 29, 31, 38, 32, 31, 30, 29, 30, 31, 26]

num_items len (temps)

product = 1.

for temperature in temps:
product *= temperature

geometric_mean = product** (1l./num_items)

print (geometric_mean) # == 30.634

Note again how it is close to the arithmetic mean and median as calculated before.
This is not always the case and will be talked about at great length in the statistics
chapter of this book.

Problems with the ratio level

Even with all of this added functionality at this level, we must generally also make a
very large assumption that actually makes the ratio level a bit restrictive.

[Data at the ratio level is usually non-negative.]

[46]

Chapter 2

For this reason alone, many data scientists prefer the interval level to the ratio level.
The reason for this restrictive property is because if we allowed negative values, the
ratio might not always make sense.

Consider that we allowed debt to occur in our money in the bank example. If we had
a balance of $50,000, the following ratio would not really make sense at all:

50,000/-50,000=-1

Data is in the eye of the beholder

It is possible to impose structure on data. For example, while I said that you technically
cannot use a mean for the one to five data at the ordinal scale, many statisticians would
not have a problem using this number as a descriptor of the dataset.

The level at which you are interpreting data is a huge assumption that should be made
at the beginning of any analysis. If you are looking at data that is generally thought

of at the ordinal level and applying tools such as the arithmetic mean and standard
deviation, this is something that data scientists must be aware of. This is mainly
because if you continue to hold these assumptions as valid in your analysis, you may
encounter problems. For example, if you also assume divisibility at the ordinal level by
mistake, you are imposing a structure where the structure may not exist.

Summary

The type of data that you are working with is a very large piece of data science. It
must precede most of your analysis because the type of data you have impacts the
type of analysis that is even possible!

Whenever you are faced with a new dataset, the first three questions you should ask
about it are the following:

* Is the data organized or unorganized? For example, does our data exist in a
nice, clean row/column structure?

* Is each column quantitative or qualitative? For example, are the values
numbers, strings, or do they represent quantities?

* At what level is the data in each column? For example, are the values at the
nominal, ordinal, interval, or ratio level?

[47]

Types of Data

The answers to these questions will not only impact your knowledge of the data at
the end but will also dictate the next steps of your analysis. They will dictate the
types of graphs you are able to use and how you interpret them in your upcoming
data models. Sometimes, we will have to convert from one level to another in order
to gain more perspective. In the coming chapters, we will take a much deeper look at
how to deal with and explore data at different levels.

By the end of this book, we will be able to not only recognize data at different
levels, but will also know how to deal with it at these levels. In the next chapter,
we will review how types of data are used by data scientists to do data discovery
and visualization.

Answers

The following are the answers for the classification of the example in the Quick recap
and check section as either ordinal or nominal are as follows:

* The origin of the beans in your cup of coffee: Nominal

* The place someone receives after completing a foot race: Ordinal

* The metal used to make the medal that they receive after placing in the
race: Nominal

* The telephone number of a client: Nominal

* How many cups of coffee you drink in a day: Ordinal

[48]

The Five Steps of
Data Science

We have spent quite some time looking at the preliminaries of data science,
including outlining the types of data and how to approach datasets depending on
their type.

In this chapter, in addition to the introduction of data science, we will focus on the
following topics:

* Steps to perform data science
* Data exploration

e Data visualization

We will use the Python packages pandas and matplotlib to explore
different datasets.

Introduction to data science

Many people ask me what the biggest difference between data science and data
analytics is. While some can argue that there is no difference between the two, many
will argue that there are hundreds! I believe that, regardless of how many differences
there are between the two terms, the biggest is that data science follows a structured,
step-by-step process that, when followed, preserves the integrity of the results.

Like any other scientific endeavor, this process must be adhered to, otherwise the
analysis and the results are in danger of scrutiny. On a simpler level, following a
strict process can make it much easier for amateur data scientists to obtain results
faster than if they were exploring data with no clear vision.

[49]

The Five Steps of Data Science

While these steps are a guiding lesson for amateur analysts, they also provide the
foundation for all data scientists, even those in the highest levels of business and
academia. Every data scientist recognizes the value of these steps and follows them
in some way or another.

Overview of the five steps

The five essential steps to perform data science are as follows:

1. Asking an interesting question

2. Obtaining the data
3. Exploring the data
4. Modeling the data
5.

Communicating and visualizing the results

First, let's look at the five steps with reference to the big picture.

Asking an interesting question

This is probably my favorite step. As an entrepreneur, I ask myself (and others)
interesting questions every day. I would treat this step as you would treat a
brainstorming session. Start writing down questions, regardless of whether or not
you think the data to answer these questions even exists. The reason for this is
twofold. First off, you don't want to start biasing yourself even before searching

for data. Secondly, obtaining data might involve searching in both public and
private locations and, therefore, might not be very straightforward. You might ask
a question and immediately tell yourself "Oh, but I bet there's no data out there that
can help me", and cross it off your list. Don't do that! Leave it on your list.

Obtaining the data

Once you have selected the question you want to focus on, it is time to scour the
world for the data that might be able to answer that question. As we mentioned
before, the data can come from a variety of sources; so, this step can be very creative!

[50]

Chapter 3

Exploring the data

Once we have the data, we can use the lessons we learned in Chapter 2, Types of Data,
and begin to break down the types of data that we are dealing with. This is a pivotal
step in the process. Once this step is completed, the analyst has generally spent
several hours learning about the domain, using code or other tools to manipulate and
explore the data, and has a very good sense of what the data might be trying to tell
them.

Modeling the data

This step involves the use of statistical and machine learning models. In this step, we
are not only fitting and choosing models, but we are also implanting mathematical
validation metrics in order to quantify the models and their effectiveness.

Communicating and visualizing the results

This is arguably the most important step. While it might seem obvious and simple,
the ability to conclude your results in a digestible format is much more difficult
than it seems. We will look at different examples of cases when results were
communicated poorly and when they were displayed very well.

In this book, we will focus mainly on steps 3, 4, and 5.

Why are we skipping steps 1 and 2 in this book?

. While the first two steps are undoubtedly imperative to the process,
they generally precede statistical and programmatic systems. Later
/S in this book, we will touch upon the different ways to obtain data;
however, for the purpose of focusing on the more scientific aspects
of the process, we will begin with exploration right away.

Exploring the data

The process of exploring data is not simply defined. It involves the ability to
recognize the different types of data, transform data types, and use code to
systemically improve the quality of the entire dataset to prepare it for the modeling
stage. In order to best represent and teach the art of exploration, I will present several
different datasets and use the Python package pandas to explore the data. Along the
way, we will run into different tips and tricks on how to handle data.

[51]

The Five Steps of Data Science

There are three basic questions we should ask ourselves when dealing with a new

dataset that we have not seen before. Keep in mind that these questions are not the
beginning and the end of data science; they are guidelines that should be followed
when exploring a newly obtained set of data.

Basic questions for data exploration

When looking at a new dataset, whether it is familiar to you or not, it is important to
use the following questions as guidelines for your preliminary analysis:

* Is the data organized or not? We are checking for whether or not the data
is presented in a row/column structure. For the most part, data will be
presented in an organized fashion. In this book, over 90% of our examples
will begin with organized data. Nevertheless, this is the most basic question
that we can answer before diving any deeper into our analysis. A general
rule of thumb is that if we have unorganized data, we want to transform it
into a row/column structure. For example, earlier in this book, we looked at
ways to transform text into a row/column structure by counting the number
of words/phrases.

* What does each row represent? Once we have an answer to how the data is
organized and are looking at a nice row/column-based dataset, we should
identify what each row actually represents. This step is usually very quick
and can help put things into perspective much more quickly.

* What does each column represent? We should identify each column by the
level of data and whether or not it is quantitative/qualitative, and so on. This
categorization might change as our analysis progresses, but it is important to
begin this step as early as possible.

* Are there any missing data points? Data isn't perfect. Sometimes, we
might be missing data because of human or mechanical error. When this
happens, we, as data scientists, must make decisions about how to deal
with these discrepancies.

* Do we need to perform any transformations on the columns? Depending
on the level/type of data in each column, we might need to perform certain
types of transformation. For example, generally speaking, for the sake of
statistical modeling and machine learning, we would like each column to be
numerical, so we would use Python to make any transformations.

All the while, we are asking ourselves the overall question, what can we infer from the
preliminary inferential statistics? We want to be able to understand our data better than
when we first found it.

Enough talk, let's look at an example in the following section.

[52]

Chapter 3

Dataset 1 — Yelp

The first dataset we will look at is a public dataset that was made available by
the restaurant review site, Yelp. All personally identifiable information has been
removed. Let's read in the data first, as shown here:

Here's a quick recap of what the preceding code does:

import pandas as pd

yelp raw data

1.

pd.read_csv("yelp.csv")
yelp raw_data.head()

Imports the pandas package and nicknames it pd

2. Readsin the .csv from the web; call is yelp raw data

3. Looks at the head of the data (just the first few rows)

We get the following:
business_id date |review_id stars | text type |user_id cool | useful | funny
My wife took me
B 2011- here on my N
0 | 9yKzy9PApeiPPOUJEtnvkg 0126 fWKvX83p0-kad4JS3dc6ESA |5 birtnday for review | rLtI8ZkDX5vH5nAX8C3q5Q |2 5 0
breakf...
2011- | have no idea why
1| ZRJwVLyzEJq1VAIhDhYiow 07-27 1iZ33sJrzXqU-0X6UBNwyA 5 some people give | review | 0a2KyELOd3Yb1V6aivbluQ |0 0 0
bad review...
2012- love the gyro plate.
2| 60RAC4uyJCsJI1XOWZpVSA 06-14 IESLBzqUCLdSzSgm0eCSxQ | 4 Rice is so good review | OhT2KtfLiobPvh6cDC8JQg |0 1 0
and | als...
2010- Rosie, Dakota, and
3|_1QQZuf4zZOyFCvXc0o6Vg 05-27 G-WvGalSbggaMHINnByodA |5 | LOVE Chaparral | review | uZetl9TONcROGOyFfughhg | 1 2 0
Dog Park!!...
General Manager
2012- .) vYmM4KTsC8ZfQBg-
4| 6ozycU1RpktNG2-1BroViw 01-05 1uJFq2r5QfJG_BEXMRCaGw |5 Scott Petelloisa | review [SMWkw 0 0 0

good eggl!l...

Is the data organized or not?

* Because we have a nice row/column structure, we can conclude that this

data seems pretty organized

[53]

The Five Steps of Data Science

What does each row represent?

It seems pretty obvious that each row represents a user giving a review of a
business. The next thing we should do is examine each row and label it by
the type of data it contains. At this point, we can also use Python to figure
out just how big our dataset is. We can use the shape quality of a DataFrame
to find this out, as shown here:

yelp raw data.shape

(10000,10)

It tells us that this dataset has 10000 rows and 10 columns. Another way to
say this is that this dataset has 10,000 observations and 10 characteristics.

What does each column represent? (Note that we have 10 columns)

business_id: This is likely to be a unique identifier for the business the
review is for. This would be at the nominal level because there is no natural
order to this identifier.

date: This is probably the date on which the review was posted. Note that
it seems to be only specific to the day, month, and year. Even though time
is usually considered continuous, this column would likely be considered
discrete and at the ordinal level because of the natural order that dates have.

review_id: This is likely to be a unique identifier for the review that each
post represents. This would be at the nominal level because, again, there is
no natural order to this identifier.

stars: From a quick look (don't worry; we will perform some further
analysis soon), we can see that this is an ordered column that represents
what the reviewer gave the restaurant as a final score. This is ordered and
qualitative, so is at the ordinal level.

text: This is probably the raw text that each reviewer wrote. As with most
text, we place this at the nominal level.

type: In the first five columns, all we see is the word review. This might be a
column that identifies that each row is a review, implying that there might be
another type of row other than a review. We will take a look at this later. We
place this at the nominal level.

user_id: This is likely to be a unique identifier for the user who is
writing the review. Just like the other unique IDs, we place this data
at the nominal level.

[54]

Chapter 3

_ Note that after we have looked at all of the columns, and found
that all of the data is either at the ordinal or nominal level, we
i have to look at the following things. This is not uncommon, but
it is worth mentioning,.

Are there any missing data points?

* Perform an isnull operation. For example, if your DataFrame is
called awesome_dataframe, then try the Python command
awesome_dataframe.isnull () .sum (), which will show the number
of missing values in each column.

Do we need to perform any transformations on the columns?

* At this point, we are looking for a few things. For example, will we need to
change the scale of some of the quantitative data, or do we need to create
dummy variables for the qualitative variables? As this dataset only has
qualitative columns, we can only focus on transformations at the ordinal
and nominal scale.

Before starting, let's go over some quick terminology for pandas, the Python data
exploration module.

DataFrames

When we read in a dataset, pandas creates a custom object called a DataFrame.
Think of this as the Python version of a spreadsheet (but way better). In this case, the
variable, yelp raw data, is a DataFrame.

To check whether this is true in Python, type in the following code:

type (yelp raw data)

pandas.core.frame.DataFrame

DataFrames are two-dimensional in nature, meaning that they are organized in

a row/column structure, just like spreadsheets are. The main benefits of using
DataFrames over, say, spreadsheet software would be that a DataFrame can handle
much larger data than most common spreadsheet software. If you are familiar with
the R language, you might recognize the word DataFrame. This is because the name
was actually borrowed from the language!

As most of the data that we will deal with is organized, DataFrames are likely to be
the most used object in pandas, second only to the Series object.

[55]

The Five Steps of Data Science

Series

The series object is simply a DataFrame, but only with one dimension. Essentially,
it is a list of data points. Each column of a DataFrame is considered to be a Series
object. Let's check this — the first thing we need to do is grab a single column from
our DataFrame; we generally use what is known as bracket notation. The
following is an example of this:

yelp raw data['business id'] # grabs a single column of the Dataframe
We will list the first and last few rows:

9yKzy9PApei PPOUJEtnvkg
ZRJIWVLyzEJglVAihDhYiow
60RAC4uyJCsJ11X0WZpVSA
_1QQZuf4zZOyFCVXcOo6Vg
60zyCcULRpktNG2-1BrovVtw
-yxfBYGB6SEqgszmxJxd97A
zp713gNhx8d9KCJIInrwlxA

O Ul b W N HE O

Let's use the type function to check that this column is a Series:

type (yelp raw datal['business id'l])

pandas.core.series.Series

Exploration tips for qualitative data

Using these two pandas objects, let's start performing some preliminary data
exploration. For qualitative data, we will specifically look at the nominal and
ordinal levels.

Nominal level columns

As we are at the nominal level, let's recall that at this level, data is qualitative
and is described purely by name. In this dataset, this refers to business_ig,
review_id, text, type, and user_id. Let's use pandas in order to dive a bit
deeper, as shown here:

yelp raw data['business id'] .describe()

The output is as follows:

count 10000
unique 4174
top ntN85eu27C04nwyPa8IHtw
freq 37

[56]

Chapter 3

The describe function will give us some quick stats about the column whose
name we enter into the quotation marks. Note how pandas automatically recognized
that business_id was a qualitative column and gave us stats that make sense.
When describe is called on a qualitative column, we will always get the following
four items:

* count: How many values are filled in

* unigue: How many unique values are filled in

* top: The name of the most common item in the dataset

* freq: How often the most common item appears in the dataset
At the nominal level, we are usually looking for a few things, which would signal a
transformation:

* Do we have a reasonable number (usually under 20) of unique items?

* Is this column free text?

* Is this column completely unique across all rows?
So, for the business_id column, we have a count of 10000. Don't be fooled,
though! This doesn't mean that we have 10,000 businesses being reviewed here.
It just means that of the 10,000 rows of reviews, the business_id column is filled
in all 10,000 times. The next qualifier, unique, tells us that we have 4174 unique

businesses being reviewed in this dataset. The most reviewed business is business
JokKtdXU7zXHcr20Lrk29a, which was reviewed 37 times:

yelp_raw_datal['review_id'] .describe ()

The output is as follows:

count 10000
unique 10000
top M3jTv5NIipi N4mgmZiIEg
freq 1

We have a count of 10000 and a unique of 10000. Think for a second, does this
make sense? Think about what each row represents and what this column represents.

(Insert Jeopardy theme song here)

[57]

The Five Steps of Data Science

Of course, it does! Each row of this dataset is supposed to represent a single, unique
review of a business and this column is meant to serve as a unique identifier for a
review; so, it makes sense that the review_id column has 10000 unique items in it.
So, why is eTa5KD-LTgQv6UT1Zmijmw the most common review? This is just a random
choice from the 10,000 and means nothing;:

yelp raw data['text'] .describe()

The output is as follows:

count 10000
unique 9998
top This review is for the chain in general. The 1...
freg 2

This column, which represents the actual text people wrote, is interesting. We would
imagine that this should also be similar to review_id in that each one should contain
unique text, because it would be weird if two people wrote exactly the same thing;
but we have two reviews with the exact same text! Let's take a second to learn about
DataFrame filtering to examine this further.

Filtering in pandas

Let's talk a bit about how filtering works. Filtering rows based on certain criteria is
quite easy in pandas. In a DataFrame, if we wish to filter out rows based on some
search criteria, we will need to go row by row and check whether or not a row
satisfies that particular condition; pandas handles this by passing in a Series of
True and False (Booleans).

We literally pass into the DataFrame a list of True and False data that means
the following;:

e True: This row satisfies the condition

* False: This row does not satisfy the condition

So, first, let's make the conditions. In the following lines of code, I will grab the text
that occurs twice:

yelp raw data['text'] .describe() ['top']

[58]

Chapter 3

Here is a snippet of the text:

"This review is for the chain in general. The location we went to is
new so it isn't in Yelp yet. Once it is I will put this review there

Right off the bat, we can guess that this might actually be one person who went
to review two businesses that belong to the same chain and wrote the exact same
review. However, this is just a guess right now.

[The duplicate text variable is of string type.]

Now that we have this text, let's use some magic to create that Series of True
and False:

duplicate text = yelp raw data['text'] .describe() ['top']
text is the duplicate = yelp raw data['text'] == duplicate_ text

Right away, you might be confused. What we have done here is take the text column
of the DataFrame and compared it to the string, duplicate_text. This is strange
because we seem to be comparing a list of 10,000 elements to a single string. Of
course, the answer should be a straight false, right?

Series has a very interesting feature in that if you compare the Series to an object,
it will return another Series of Booleans of the same length where each True and
False is the answer to the question is this element the same as the element you are
comparing it to? Very handy! This is as follows:

type(text is the duplicate) # it is a Series of Trues and Falses

text_is_the_duplicate.head() # shows a few Falses out of the Series

In Python, we can add and subtract true and false as if they were 1 and 0,
respectively. For example, True + False - True + False + True == 1. So, we can verify
that this series is correct by adding up all of the values. As only two of these rows
should contain the duplicate text, the sum of the Series should only be 2, which it is!
This is as follows:

sum(text is the duplicate) # == 2

[59]

The Five Steps of Data Science

Now that we have our Series of Booleans, we can pass it directly into our
DataFrame, using bracket notation, and get our filtered rows, as illustrated here:

filtered dataframe

the filtered Dataframe

filtered dataframe

We get the following output:

yelp raw data[text is the duplicate]

business_id

date

review_id

stars

text

type

user_id

cool

useful

funny

4372

JWh4QOOHQ2XylcfmMAAT2A

2012-
06-16

ivGRamFF3KurESbjki6uMw

This review is for
the chain in
general. The l...

review

KLekdmod4FdNnPOhuUhzZNw

9680

rlonUa02zMz_kiBeF-Adug

2012-
06-16

mutQE6UfiLIpJ8Wozpq5UA

n

This review is for
the chain in
general. The ...

review

KLekdmo4FdNnPOhuUhzZNw

o

It seems that our suspicions were correct and one person, on the same day, gave the
exact same review to two different business_id, presumably a part of the same
chain. Let's keep moving along to the rest of our columns:

yelp_raw_datal['type'l]l .describe()

count 10000
unique 1
top review
freqg 10000

Remember this column? It turns out they are all the exact same type, namely review:

yelp raw data['user id'] .describe()
10000

#
#
#
#

count
unique
top
freq

6403
fczQCSmaWF78toLEmb0Zsw

38

Similar to the business_id column, all the 10000 values are filled in with 6403
unique users, and one user reviewing 38 times!

In this example, we won't have to perform any transformations.

Ordinal level columns

As far as ordinal columns go, we are looking at date and stars. For each of these
columns, let's look at what the described method brings back:

yelp raw datal['stars'] .describe()

[60]

Chapter 3

count
mean
std
min
25%
50%
75%
max

H oH H H H H H HF

10000.

(S IS I N U I N Y

000000

.777500
.214636
.000000
.000000
.000000
.000000
.000000

Woah! Even though this column is ordinal, the describe method returned stats that
we might expect for a quantitative column. This is because the software saw a bunch
of numbers and just assumed that we wanted stats like the mean or the min and

max. This is not a problem. Let's use a method called value counts to see the count
distribution, as shown here:

yelp raw data['stars'].value_counts()

4

H HF H HF H*

5
3
2
1

3526
3337
1461
927
749

The value_counts method will return the distribution of values for any column.

In this case, we can see that the star rating 4 is the most common, with 3526 values,
followed closely by rating 5. We can also plot this data to get a nice visual. First, let's
sort by star rating, and then use the prebuilt plot method to make a bar chart:

import

dates =
dates.sort_values

datetime

yelp raw data['stars'].value_counts()

dates.plot (kind="'bar')

We get the following output:

4000

3500

2500

2000

1500

1000

500

— ~N m

[61]

The Five Steps of Data Science

From this graph, we can conclude that people are definitely more likely to give good
star ratings over bad ones! We can follow this procedure for the date column. I will
leave you to try it on your own. For now, let's look at a new dataset.

Dataset 2 — Titanic

The titanic dataset contains a sample of people who were on the Titanic when it
struck an iceberg in 1912. Let's go ahead and import it, as shown here:

titanic = pd.read csv('short titanic.csv')
titanic.head()

The following is the output of the preceding code:

Survived | Pclass | Name Sex |Age
0|0 3 Braund, Mr. Owen Harris male |22
1)1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38
2|1 3 Heikkinen, Miss. Laina female | 26
3|1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female | 35
4|0 3 Allen, Mr. William Henry male |35

This table represents the DataFrame for the dataset short_titanic.csv. This data
is definitely organized in a row/column structure, as is most spreadsheet data. Let's
take a quick peek at its size, as shown here:

titanic.shape

(891, 5)

So, we have 891 rows and 5 columns. Each row seems to represent a single
passenger on the ship and as far as columns are concerned, the following list tells
us what they indicate:

* survived: This is a binary variable that indicates whether or not the
passenger survived the accident (1 if they survived, o if they died). This
is likely to be at the nominal level because there are only two options.

* pclass: This is the class that the passenger was traveling in (3 for third class,
and so on). This is at the ordinal level.

* Name: This is the name of the passenger, and it is definitely at the
nominal level.

[62]

Chapter 3

* sex: This indicates the gender of the passenger. It is at the nominal level.

* Age: This one is a bit tricky. Arguably, you may place age at either a
qualitative or quantitative level; however, I think that age belongs to a
quantitative state, and thus, to the ratio level.

As far as transformations are concerned, usually, we want all columns to be
numerical, regardless of their qualitative state. This means that Name and Sex will
have to be converted into numerical columns somehow. For sex, we can change
the column to hold 1 if the passenger was female and 0 if they were male. Let's use
pandas to make the change. We will have to import another Python module, called
numpy or numerical Python, as illustrated here:

import numpy as np
titanic['Sex'] = np.where(titanic['Sex']=='female', 1, 0)

The np . where method takes in three things:

* Alist of Booleans (True or False)
* Anew value
* A backup value
The method will replace all true listings with the first value (in this case 1) and the

false listings with the second value (in this case 0), leaving us with a new numerical
column that represents the same thing as the original sex column:

titanic['Sex']

H o HF HF HF H H
< o0 Uk W N RO
O O O O r KB KB O

Let's use a shortcut and describe all the columns at once, as shown here:

titanic.describe ()

[63]

The Five Steps of Data Science

We get the following output:

Survived |Pclass Sex Age

count | 891.000000 | 891.000000 | 891.000000 | 714.000000

mean |0.383838 |2.308642 [0.352413 [29.699118

std 0.486592 |0.836071 0.477990 |14.526497

min |0.000000 |1.000000 |0.000000 |0.420000

25% (0.000000 |(2.000000 |(0.000000 |(20.125000

50% |0.000000 |(3.000000 |(0.000000 |28.000000

75% |(1.000000 |(3.000000 |1.000000 |38.000000

max |1.000000 |3.000000 [1.000000 |[80.000000

This table lists descriptive statistics of the titanic dataset. Note how our qualitative
columns are being treated as quantitative; however, I'm looking for something
irrelevant to the data type. Note the count row: Survived, Pclass, and sex all have
891 values (the number of rows), but Age only has 714 values. Some are missing! To
double verify, let's use the pandas functions called isnull and sum, as shown here:

titanic.isnull () .sum()

Survived
Pclass

Name

Sex

Age 17

N O O O O

This will show us the number of missing values in each column. So, Age is the only
column with missing values to deal with.

When dealing with missing values, you usually have the following two options:

* Drop the row with the missing value

e Trytofillitin

Dropping the row is the easy choice; however, you run the risk of losing valuable
data! For example, in this case, we have 177 missing age values (891-714), which

are nearly 20% of the data. To fill in the data, we could either go back to the history
books, find each person one by one, and fill in their age, or we can fill in the age with
a placeholder value.

[64]

Let's fill in each missing value of the Age column with the overall average age of

the people in the dataset. For this, we will use two new methods, called mean and
fillna. We use isnull to tell us which values are null and the mean function to give
us the average value of the Age column. The £il1lna method is a pandas method that

replaces null values with a given value:

print sum(titanic(['Age'].isnull()) # == 177 missing values
average age = titanic['Age'].mean() # get the average age
titanic['Age'] .fillna(average age, inplace = True) #use the fillna

method to remove null values

print sum(titanic['Age'].isnull()) # == 0 missing values

We're done! We have replaced each value with 26. 69, the average age in the dataset.

The following code now confirms that no null values exist:

titanic.isnull () .sum()

Survived
Pclass
Name

Sex

Age

O O O O O

Great! Nothing is missing, and we didn't have to remove any rows:

titanic.head()

We get the following output:

Survived | Pclass | Name Sex | Age
0|0 3 Braund, Mr. Owen Harris 0 |22
11 1 Cumings, Mrs. John Bradley (Florence Briggs Th... | 1 38
201 3 Heikkinen, Miss. Laina 1 26
3|1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) 1 35
4|0 3 Allen, Mr. William Henry 0 35

[65]

The Five Steps of Data Science

At this point, we could start getting a bit more complicated with our questions, for
example, what is the average age for a female or a male? To answer this, we can filter by
each gender and take the mean age; pandas has a built-in function for this, called
groupby, as illustrated here:

titanic.groupby('Sex') ['Age'] .mean ()

This means group the data by the Sex column, and then give me the mean age for each
group. This gives us the following output:

Sex
0 30.505824
1 28.216730

We will ask more of these difficult and complex questions later in this book, and will
be able to answer them with Python and statistics.

Summary

Although this is only our first look at data exploration, don't worry, this is definitely
not the last time we will follow these steps for data science and exploration.

From now on, every time we look at a new piece of data, we will use our steps of
exploration to transform, break down, and standardize our data. The steps outlined
in this chapter, while they are only guidelines, form a standard practice that any data
scientist can follow in their work. The se steps can also be applied to any dataset that
requires analysis.

We are rapidly approaching the section of this book that deals with statistical,
probabilistic, and machine learning models. Before we can truly jump into these
models, we have to look at some of the basics of mathematics. In the next chapter,
we will take a look at some of the math necessary to perform some of the more
complicated operations in modeling, but don't worry, the math that's required for
this process is minimal, and we will go through it step by step.

[66]

Basic Mathematics

It's time to start looking at some basic mathematics principles that are handy when
dealing with data science. The word math tends to strike fear in to the hearts of
many, but I aim to make this as enjoyable as possible. In to this chapter, we will go
over the basics of the following topics:

* Basic symbols/terminology
* Logarithms/exponents

* Set theory

* Calculus

* Matrix (linear) algebra

We will also cover other fields of mathematics. Moreover, we will look at how
to apply each of these to various aspects of data science, as well as other
scientific endeavors.

Recall that, in a previous chapter, we identified math as being one of the three

key components of data science. In this chapter, I will introduce concepts that

will become important later on in this book - when looking at probabilistic and
statistical models - and we will also be looking at concepts that will be useful in this
chapter. Regardless of this, all of the concepts in this chapter should be considered
fundamental to your quest to become a data scientist.

Mathematics as a discipline

Mathematics, as a science, is one of the oldest known forms of logical thinking. Since
ancient Mesopotamia (3,000 BCE), and probably before, humans have been relying
on arithmetic and more challenging forms of math to answer life's biggest questions.

[67]

Basic Mathematics

Today, we rely on math for most aspects of our daily lives; yes, I know that sounds
like a cliche, but I mean it. Whether you are watering your plants or feeding your
dog, your internal mathematical engine is constantly working — calculating how
much water the plant had per day over the last week and predicting the next time
your dog will be hungry given that it is eating right now. Whether or not you are
consciously using the principles of math, the concepts live deep inside everyone's
brains. It's my job as a math teacher to get you to realize it.

Basic symbols and terminology

In the following section, we will review the mathematical concepts of vectors,
matrices, arithmetic symbols, and linear algebra, as well as some more subtle
notations that are used by data scientists.

Vectors and matrices

A vector is defined as an object with both magnitude and direction. This definition,
however, is a bit complicated. For our purpose, a vector is simply a 1-dimensional
array representing a series of numbers. Put another way, a vector is a list of numbers.

It is generally represented using an arrow or bold font, as follows:

—>0rXx

X

Vectors are broken into components, which are individual members of the vector.
We use index notations to denote the element that we are referring to, as follows:

3
If >=|6|thenx, =3
-8

. Inmath, we generally refer to the first element as index 1, as
% opposed to computer science, where we generally refer to the
L first element as index 0. It is important to remember which
index system you are using.

[68]

Chapter 4

In Python, we can represent arrays in many ways. We could simply use a Python list
to represent the preceding array:

x = [3, 6, 8]

However, it is better to use the numpy array type to represent arrays, as shown here,
because it gives us much more utility when performing vector operations:

import numpy as np
X = np.array([3, 6, 8])

Regardless of the Python representation, vectors give us a simple way of storing
multiple dimensions of a single data point/observation.

If we measure the average satisfaction rating (0-100) of employees in three
departments of a company as being 57 for HR, 89 for engineering, and 94 for
management, we can represent this as a vector with the following formula:

X, 57
X=|x,|=|89
X, 94

This vector holds three different bits of information about our data. This is perfect
use of a vector in data science.

You can also think of a vector as being the theoretical generalization of the pandas
Series object. So, naturally, we need something to represent the DataFrame.

We can extend our notion of an array to move beyond a single dimension and
represent data in multiple dimensions.

A matrix is a two-dimensional representation of arrays of numbers. Matrices (plural)
have two main characteristics that we need to be aware of. The dimension of a
matrix, denoted by n x m (n by m), tells us that the matrix has n rows and m columns.
Matrices are generally denoted by a capital, bold-faced letter, such as X. Consider the
following example:

[69]

Basic Mathematics

This is a 3 x 2 (3 by 2) matrix because it has three rows and two columns.

If a matrix has the same number of rows and columns, it is
s called a square matrix.

The matrix is our generalization of the pandas DataFrame. It is arguably one of the
most important mathematical objects in our toolkit. It is used to hold organized
information, in our case, data.

Revisiting our previous example, let's say we have three offices in different locations,
each with the same three departments: HR, engineering, and management. We
could make three different vectors, each holding a different office's satisfaction
scores, as shown here:

57 67 65
x=|89|,y=87|,z=| 98
94 94 60

However, this is not only cumbersome, but also unscalable. What if you have 100
different offices? Then you would need to have 100 different one-dimensional arrays
to hold this information.

This is where a matrix alleviates this problem. Let's make a matrix where each row
represents a different department and each column represents a different office,
as shown here:

Office 1 | Office 2 | Office 3

HR 57 67 65
Engineering 89 87 98
Management 94 84 60

This is much more natural. Now, let's strip away the labels, and we are left with
a matrix!

57 67 65
x=89 &7 98
94 94 60

[70]

Chapter 4

Quick exercises
1. If we added a fourth office, would we need a new row or column?
2. What would the dimension of the matrix be after we added the fourth office?

3. If we eliminate the management department from the original X matrix,
what would the dimension of the new matrix be?

4. What is the general formula to find out the number of elements in the matrix?

Answers
1. Column
2. 3x4
3. 2x3
4. n xm (n being the number of rows and m being the number of columns)

Arithmetic symbols

In this section, we will go over some symbols associated with basic arithmetic that
appear in most, if not all, data science tutorials and books.

Summation

The uppercase sigma) symbol is a universal symbol for addition. Whatever is to the
right of the sigma symbol is usually something iterable, meaning that we can go over
it one by one (for example, a vector).

For example, let's create the representation of a vector:
X =11, 2, 3, 4, 5]

To find the sum of the content, we can use the following formula:
z x, =15

In Python, we can use the following formula:

sum(x) # == 15

[71]

Basic Mathematics

For example, the formula for calculating the mean of a series of numbers is quite
common. If we have a vector (x) of length 7, the mean of the vector can be calculated
as follows:

mean =1/ ”Z X,

This means that we will add up each element of x, denoted by xi, and then multiply
the sum by 1/n, otherwise known as dividing by 7 (the length of the vector).

Proportional

The lowercase alpha symbol, a, represents values that are proportional to each other.
This means that as one value changes, so does the other. The direction in which the
values move depends on how the values are proportional. Values can either vary
directly or indirectly. If values vary directly, they both move in the same direction
(as one goes up, so does the other). If they vary indirectly, they move in opposite
directions (if one goes down, the other goes up).

Consider the following examples:

* The sales of a company vary directly with the number of customers. This can
be written as Sales a Customers.

* Gas prices vary (usually) indirectly with oil availability, meaning that as the
availability of oil goes down (it's more scarce), gas prices go up. This can be
denoted as Gas a Availability.

Later on, we will see a very important formula called the Bayes' formula, which
includes a variation symbol.

Dot product

The dot product is an operator like addition and multiplication. It is used to combine

two vectors, as shown here:
3) (9
. =3*%9+7*%x5=62
7)\5

So, what does this mean? Let's say we have a vector that represents a customer's
sentiments toward three genres of movies: comedy, romance, and action.

When using a dot product, note that an answer is a single
s number, known as a scalar.

[72]

Chapter 4

On a scale of 1-5, a customer loves comedies, hates romantic movies, and is alright
with action movies. We might represent this as follows:

5
1
3

Here, 5 denotes their love for comedies, 1 their hatred of romantic movies, and 3 the
customer's indifference toward action movies.

Now, let's assume that we have two new movies, one of which is a romantic comedy
and the other is a funny action movie. The movies would have their own vector of
qualities, as shown here:

4 5
ml=|5|m2=|1
1 5

Here, m1 is our romantic comedy and m2 is our funny action movie.

In order to make a recommendation, we will apply the dot product between the
customer's preferences for each movie. The higher value will win and, therefore, will
be recommended to the user.

Let's compute the recommendation score for each movie. For movie 1, we want to
compute the following;:

We can think of this problem as follows:

Customer: M, _ _
(5.4) —> user loves comedies and this
5 4 + move is funny
1 . 5 = (1.5) —> user hates romance but this
move is romantic
3 1 +
(3.1) —> user doesn't mind action and
the move is not action packed
28

[73]

Basic Mathematics

The answer we obtain is 28, but what does this number mean? On what scale is it?
Well, the best score anyone can ever get is when all values are 5, making the outcome
as follows:

5015|=5"+52+5"=175

The lowest possible score is when all values are 1, as shown here:

1 (1
L-|1|=P+1I"+1*=3
1)

So, we must think about 28 on a scale from 3 to 75. To do this, imagine a number line
from 3 to 75 and where 28 would be on it. This is illustrated as follows:

L | |
L T 1

3 28 75

We're not that far. Let's this try for movie 2:

5) (5
L 1] =(5%5)+(1%1)+(3%5) = 41
3)(5

This is higher than 28! Putting this number on the same timeline as before, we can
also visually observe that it is a much better score, as shown here:

So, between movie 1 and movie 2, we would definitely recommend movie 2 to
our user. This is, in essence, how most movie prediction engines work. They
build a customer profile, which is represented as a vector. They then take a vector
representation of each movie they have to offer, combine them with the customer
profile (perhaps with a dot product), and make recommendations from there. Of
course, most companies must do this on a much larger scale, which is where a
particular field of mathematics, called linear algebra, can be very useful; we will
look at it later in this chapter.

[74]

Chapter 4

Graphs

No doubt you have encountered dozens, if not hundreds, of graphs in your life so
far. I'd like to mostly talk about conventions in regards to graphs and notations.

The following is a basic Cartesian graph (x and y coordinates). The x and y
notations are very standard, but sometimes do not entirely explain the big picture.
We sometimes refer to the x variable as being the independent variable and the y
variable as the dependent variable. This is because when we write functions, we
tend to speak about them as being y is a function of x, meaning that the value of y is
dependent on the value of x. This is what a graph is trying to show.

Suppose we have two points on a graph, as shown here:

We refer to the points as (x1, y1) and (x2, y2).

The slope between these two points is defined as follows:

slope =m = (y2—y1)/(x2—xl)

You have probably seen this formula before, but it is worth mentioning, if only for
its significance. The slope defines the rate of change between the two points. Rates
of change can be very important in data science, specifically in areas involving
differential equations and calculus.

Rates of change are a way of representing how variables move together and to what
degree. Imagine we are modeling the temperature of your coffee in relation to the
time that it has been sitting outside. Perhaps we have a rate of change as follows:

—2deg reesF / 1minute

This rate of change is telling us that for every single minute, our coffee's temperature
is dropping by two degrees Fahrenheit.

Later on in this book, we will look at a machine learning algorithm called linear
regression. In linear regression, we are concerned with the rates of change between
variables, as they allow us to exploit this relationship for predictive purposes.

[75]

Basic Mathematics

Think of the Cartesian plane as being an infinite plane of
. vectors with two elements. When people refer to higher
a dimensions, such as 3D or 4D, they are merely referring to an
s infinite space that holds vectors with more elements. A 3D
space holds vectors of length three while a 7D space holds
vectors with seven elements in them.

Logarithms/exponents

An exponent tells you how many times you have to multiply a number by itself,
as illustrated:

exponent

=2-2:2-2=16

v
4

2

M

base

A logarithm is the number that answers the question "what exponent gets me from
the base to this other number?" This can be denoted as follows:

logi (16)= 4

haqr Iogérithm

If these two concepts seem similar, then you are correct! Exponents and logarithms
are heavily related. In fact, the words exponent and logarithm actually mean the
same thing! A logarithm is an exponent. The preceding two equations are actually
two versions of the same thing. The basic idea is that 2 times 2 times 2 times 2 is 16.

The following is a depiction of how we can use both versions to say the same thing.
Note how I use arrows to move from the log formula to the exponent formula:

= |
log, (16)=4+«> 2" =16
=

Consider the following examples:

o log,81=4because3* =81
o log 125 =3because5’ =125

[76]

Chapter 4

Note something interesting. Let's rewrite the first equation:

log,81=4

We then replace 81 with the equivalent statement, 3*, as follows:

log125=3

Something interesting to note: the 3s seem to cancel out. This is actually very
important when dealing with numbers more difficult to work with than 3s and 4s.

Exponents and logarithms are most important when dealing with growth. More
often than not, if a quantity is growing (or declining in growth), an exponent/
logarithm can help model this behavior.

For example, the number e is around 2.718 and has many practical applications. A
very common application is interest calculation for saving. Suppose you have $5,000
deposited in a bank with continuously compounded interest at the rate of 3%, then
we can use the following formula to model the growth of your deposit:

A= Pe"

In this formula:

* A denotes the final amount
* P denotes the principal investment (5000)
* e denotes a constant (2.718)
* rdenotes the rate of growth (.03)
* tdenotes the time (in years)
We are curious; when will our investment double? How long would I have to

have my money in this investment to achieve 100% growth? We can write this in
mathematical form, as follows:

10000 = 5000¢*

2=¢"" (divided by 5000 on both sides)

[77]

Basic Mathematics

At this point, we have a variable in the exponent that we want to solve. When this
happens, we can use the logarithm notation to figure it out:

e
_ 03 s
2=¢" o log, (2) . '.23r

This leaves us with log, (2)=.03z.

When we take the logarithm of a number with a base of ¢, it is called a natural
logarithm. We rewrite the logarithm as follows:

In(Z) =.03¢

Using a calculator (or Python), we find that /7(2)=0.69:
0.69 -.03¢

=231

This means that it would take 2.31 years to double our money.

Set theory

Set theory involves mathematical operations at the set level. It is sometimes thought
of as a basic fundamental group of theorems that governs the rest of mathematics.
For our purpose, we'll use set theory to manipulate groups of elements.

A set is a collection of distinct objects.

That's it! A set can be thought of as a list in Python, but with no repeat objects. In
fact, there is even a set of objects in Python:

s = set()

set([1, 2, 2, 3, 2, 1, 2, 2, 3, 2])
will remove duplicates from a list

n
Il

+H

s == {1, 2, 3}

[78]

Chapter 4

Note that, in Python, curly braces {, } can denote either a set or
X a dictionary.

Remember that a dictionary in Python is a set of key-value pairs, for example:

dict = {"dog": "human's best friend", "cat": "destroyer of world"}
dict["dog"]l# == "human's best friend"
len(dict["cat"]) # == 18

but if we try to create a pair with the same key as an existing key

dict["dog"] = "Arf"
dict
{"dog": "Arf", "cat": "destroyer of world"}

It will override the previous value
dictionaries cannot have two values for one key.

They share this notation because they share a quality that sets cannot have duplicate
elements, just as dictionaries cannot have duplicate keys.

The magnitude of a set is the number of elements in the set, and is represented
as follows:

|A|= magnitude of A

s # == {1,2,3}
len(s) == 3 # magnitude of s

The concept of an empty set exists and is denoted by the
L character {}. This null set is said to have a magnitude of 0.

If we wish to denote that an element is within a set, we use the epsilon notation,
as shown here:

2 €{1,2,3}

This means that the 2 element exists in the set of 1, 2, and 3. If one set is entirely
inside another set, we say that it is a subset of its larger counterpart:

A= {1,5,6}, B={1,56,7,8}

AcB

[79]

Basic Mathematics

So, A is a subset of B and B is called the superset of A. If A is a subset of B but A does
not equal B (meaning that there is at least one element in B that is not in A), then A is
called a proper subset of B.

Consider the following examples:

* A set of even numbers is a subset of all integers
* Every set is a subset, but not a proper subset, of itself
* A set of all tweets is a superset of English tweets
In data science, we use sets (and lists) to represent a list of objects and, often, to

generalize the behavior of consumers. It is common to reduce a customer to a set
of characteristics.

Imagine we are a marketing firm trying to predict where a person wants to shop for
clothes. We are given a set of clothing brands the user has previously visited, and our
goal is to predict a new store that they would also enjoy. Suppose a specific user has
previously shopped at the following stores:

userl = {"Target", "Banana Republic","0ld Navy"}
note that we use {} notation to create a set
compare that to using [] to make a list

So, user1 has previously shopped at Target, Banana Republic, and 01d Navy. Let's
also look at a different user, called user2, as shown here:

user2 = {"Banana Republic","Gap","Kohl's"}

Suppose we are wondering how similar these users are. With the limited information
we have, one way to define similarity is to see how many stores there are that they
both shop at. This is called an intersection:

userlﬂ user2 = {BananaRepublic}

The intersection of two sets is a set whose elements appear in both sets. It is denoted
using the N symbol, as shown here:

userl(\user2 = { Banana Republic}

|user 1ﬂ user 2| =1

[80]

Chapter 4

The intersection of the two users is just one store. So, right away, that doesn't seem
great. However, each user only has three elements in their set, so having 1/3 does
not seem as bad. Suppose we are curious about how many stores are represented
between the two of them; this is called a union.

The union of two sets is a set whose elements appear in either set. It is denoted using
the U symbol, as shown here:

userl Uuser2 = {Banana Republic,Target,Old Navy,Gap, Kohl ’s}
|user1 N user2| =1
|user1 U user2| =5

When looking at the similarities between userl and user2, we should use a
combination of the union and the intersection of their sets. user1 and user2 have one
element in common out of a total of five distinct elements between them. So, we can
define the similarity between the two users as follows:

|userl N user2| _1

|user1Uuser2| 5

In fact, this has a name in set theory. It is called the Jaccard measure. In general, for
the A and B sets, the Jaccard measure (Jaccard similarity) between the two sets is
defined as follows:

It can also be defined as the magnitude of the intersection of the two sets divided by
the magnitude of the union of the two sets.

This gives us a way to quantify similarities between elements represented with sets.

Intuitively, the Jaccard measure is a number between 0 and 1, so that when the
number is closer to 0, people are more dissimilar, and when the measure is closer to
1, people are considered similar to each other.

[81]

Basic Mathematics

If we think about the definition, then it actually makes sense. Take a look at the
measure once more:

Js(A, B) - Number of stores they sharein common

Unique number of stores they liked combined

Here, the numerator represents the